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Summary

This report describes experimental and theoretical investigations of acoustic

mixing procedures designed to uniformly distribute particles in a combustion

tube for application in the Particle Cloud Combustion Experiment (PCCE).

Two acoustic mixing methods are investigated: mixing in a cylindrical tube using

high frequency spinning modes generated by suitably phased, or "quadrature"

speakers, and acoustic premixing in a sphere.

Quadrature mixing leads to rapid circumferential circulation of the powder

around the tube. Good mixing is observed in the circulating regions. However,

because axial inhomogeneities are necessarily present in the acoustic field, this

circulation does not extend throughout the tube.

Simultaneous operation of the quadrature-speaker set and the axial-speaker

was observed to produce considerably enhanced mixing compared to operation

of the quadrature-speaker set alone. Mixing experiments using both types of

speakers were free of the longitudinal powder drift observed using axial-speakers

alone.

Vigorous powder mixing was obtained in the sphere for many normal

modes; however, in no case was the powder observed to fill the sphere entirely.

Theoretical analysis indicates that mixing under steady conditions cannot fill

more than a hemisphere except under very unusual conditions. Premixing in

a hemisphere may be satisfactory; otherwise, complete mixing in microgravity

might be possible by operating the speaker in short bursts.



A general conclusion is that acoustic transients are more likely to produce

good mixing than steady state conditions. The reason is that in steady condi-

tions, flow structures like nodal planes are possible and often even unavoidable.

These tend to separate the mixing region into cells across which powder cannot

be transferred. In contrast, transient not only are free of such structures, they

also have the characteristics, desirable for mixing, of randomness and disorder.

This conclusion is corroborated by mixing experiments using axial waves.

.. ÷
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1. Introduction

Mixing methods using steady state acoustic straming are investigated as

means to achieve a uniformly dispersed particle cloud for application in the

particle cloud combusion experiment. A comprehensive review of the theory of

acoustic straining is given. Two specific configurations are analyzed in detail

theoretically and experimentally: a "quadrature" speaker arrangement in a

combustion tube designed to excite acoustic spinning modes, and premixing in

a sphere. Theoretically, the spinning modes should cause a secondary streaming

flow along circular streamlines throughout each tube cross-section.

Experimentally however, inhomogeneity of the acoustic field prevents estab-

lishment of this secondary flow throughout the tube. In premixing experiments,

the sphere could not be filled with a uniform particle cloud. This result is

confirmed by theoretical analysis which shows that secondary flow in a sphere

necessarily contains a nodal plane across which particles cannot be transferred.

It is concluded that acoustic transients are more likely to be successful mixing

mechanisms than steady state fields.



2. Particle Motion in an Aerosol Due to an Acoustic Field

2.1. Introduction

Along the years, much work has been done on the subject of particle motion

due to an acoustic field ([1] to [41]), starting with the experimental study of dust

striations and figures in resonant tubes by Kundt [1] in 1866. In 1891 Koenig

[3] first proposed an explanation for dust striations, which were also reported by

Rayleigh [4]. However, rather than confirm Koenig's theory, further published

works on the subject, such as those by Robinson [5], Thomas [6], Cook ([7] and

[8]), or Irons [9], began and later fueled a controversy, with participants either

supporting or refuting Koenig's theory. Only the careful experimental study of

Andrade in 1931 ([10] to [13]) unveiled the complexity of most of the physical

mechanisms involved, leading to an acceptable theoretical explanation of the dust

striation phenomenon.

This section describes the major physical mechanisms at work when ly-

copodium particles are immersed in an acoustic field. The emphasis is on

understanding the importance of each mechanism relative to the others as a

function of such parameters as the frequency and amplitude of the acoustic

vibration. How these mechanisms affect acoustic mixing is also discussed using

comparisons with results obtained in PCCE experiments.

2.2. Entrainment Rate

The entrainment rate, which is a measure of the entrainment of a particle by

a sound wave, is an important parameter in acoustic mixing since it can be used
i



to determine what the dominant mixing mechanisms are for given conditions.

The entrainment rate is given by St. Clair [14] as:

Xp = 1 (1)

Xg V/1 + (Trpfd2/9#)2

9. ] (2)

where Xp is the amplitude of the particle displacement, Xg is the acoustic

amplitude of the gas displacement, p is the density of the particles, f is

the frequency, d is the particle diameter, and # is the coefficient of dynamic

viscosity. _ is the phase of the particle motion relative to the gas motion.

Equation 1 expresses the relative influence of inertia and viscous effects on

mixing. At very low frequencies (Xp _ 1 ), the viscous term dominates and

the particle is fully entrained by the gas, participating in its motion completely.

At very high frequencies ( Xp --_ 0), the inertial effects are dominant, and the
Xg

particle remains virtually stationary. At intermediate frequencies, the particle is

entrained up to a certain point by the acoustic vibration of the gas.

The rate of entrainment drops rapidly with frequency as shown in Figure 1,

which plots -_ and ¢ for lycopodium particles ( p : 1020kg/m 3 and d : 22#m

with a standard deviation of 1.82 #m). At frequencies for which low-frequency

mixing is performed (100 Hz to 500 Hz) using low-frequency axial-speakers, the

entrainment rate is fairly high (over 20%). For high-frequency mixing using

quadrature-speakers, the entrainment rate is very low (2.5% at 4000 Hz).

A more detailed analysis of the forces acting on particles in a sound

field is a complex task beyond the scope of this study, which is limited to

5
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Figure 1. Entrainment Rate for Lycopodium Particles.

mechanisms relevant to acoustic mixing. Such an analysis was carried in part by

Mednikov [15]:

2.3. Mixing Mechanisms in an Acoustic Field

The most important mechanisms which can produce steady motion resulting

in mixing in a strong acoustic field are acoustic streaming and acoustic radiation

pressure. Streaming can be considered loosely as the result of the absorption of

sound, while radiation pressure is a result of the scattering of sound waves by

each particle. Descriptions of these mechanisms follow.

2.4. Streaming

At high sound intensity levels, stationary flows develop in fluids from acoustic

streaming. These flows, also sometimes referred to as acoustic wind or quartz

6



wind, are particularlystrong in the proximity of obstacles in the sound field.

They were firstobserved by Faraday in 1831 [16].

Large, Medium, and Small Scale Streaming

Streaming isof several forms, as shown by Rozenberg [17].The firsttype is

large scale streaming (Eckart streaming), which isstreaming in the bulk of the

fluidas a resultof viscous and thermal conduction losses.

The second kind isstreaming outside a boundary-layer, which isreferred to

here as Rayleigh streaming. It isdue to the interactionbetween an obstacle and

an acoustic wave. Rayleigh streaming has a scale equal to the sound wavelength

and is referred to in this report as "medium scale" streaming. Like Eckart

streaming, Rayleigh streaming acts as a particle transport mechanism which

can be used as a mixing process.

The third kind of streaming is small scale streaming, such as streaming inside

a boundary-layer (Schlichting streaming), where a rotational flow develops inside

the boundary-layer. As opposed to large scale and medium scale streaming,

small scale streaming does not act as a transport mechanism but is responsible

for interaction forces between particles which result in regular particle striation

patterns.

These three types of streaming are reviewed in the next few sections,

where their influence on particle motion and their effect on acoustic mixing are

discussed.

Slow and Fast Streaming Solutions



condition [17]:

Most published theoretical studies solve the streaming problem using succes-

sive approximations of the governing hydrodynamic equations. The solution for

the streaming velocity obtained using this solution is limited by the following

XL'

Re ,¢_ L.--_ (3)

where X is the sound wavelength, L' is the scale of the sound field, L '1 is the

stationary streaming scale, and Re is the acoustic Reynolds number defined as:

_)0

Re = 1.98k---_ (4)

where vo is the velocity amplitude of the sound wave, k is the wave number

2_r

defined as k - X ' and v is the kinematic coefficient of viscosity.

As shown in the next section, the streaming velocity obtained using the

method of successive approximations is much smaller than the acoustic velocity

v0 and corresponds to what has been referred to as the "slow streaming" solution.

From Equation 3, it is clear that this solution is not valid above a certain

acoustic level Vmax. Experiments have shown that at high acoustic levels,

streaming velocities are greatly under predicted by the method of successive

approximations. However, very little work has been published to date on this

phenomenon, sometimes referred to as "fast streaming".

It is useful at this point to look at the physical meaning of the acoustic

Reynolds number Re, and consider how it relates to "slow" and "fast streaming".

Re can be regarded as a measure of the strength of finite-amplltude effects

versus the strength of viscous dissipation effects.



From Goldberg [18], weknow that attenuation due to viscous dissipation is

the dominant mechanismif Re << 1. In this case,Equation 3 is usually satisfied

and experimental data on streaming is in good agreementwith the theoretical

results.

For Re >> 1, the condition in Equation 3 is usually not satisfied and the

theoretical streaming velocities greatly underpredict the measured data. This

correspondsto the casewherefinite-amplitude effects,resulting in wavedistortion

and eventualIy in shock formation, dominate viscous dissipation effects. As

mentioned previously, "slow streaming" is a direct result of viscous and thermal

dissipation. For Re >> 1, the effectivewave attenuation due to finite-amplitude

effects is very high and replacesviscous and thermal dissipation as the major

attenuation term. As discussedin greater detail in the next section, it appears

that this increase in attenuation is actually responsible for the increase in

streaming. Therefore, "fast streaming" is a direct result of dissipative losses,

where lossesdue to finite-amplitude effectshave replaced lossesdue to viscous

and thermal dissipation.

2.4.1. Large Scale Streaming (Eckart Streaming)

Eckart [19] was the first to solve the problem of streaming induced by a well-

collimated sound beam in a cylindrical tube. This type of streaming is caused

by bulk absorption throughout the acoustic field and produces vortices having a

scale determined by the volume occupied by the sound beam. Thus, it is a large

scale phenomenon (larger than the wavelength).

9



In a practical case, Eckart streaming in a two-inch diameter PCCE combustor

can only be obtained using extremely high frequencies, due to the narrowness of

the sound beam required.

10



2.4.1.1. Slow Streaming

In the case of a cylindrical sound beam of radius rl travelling in an

anechoically terminated tube of radius R, the streaming velocity profile is shown

in Figure 2. In the direction of the tube axis z, the streaming velocity is given

as a function of the tube radius r by:

.- R if!
............................ iii!_i_i;i_i.:i_!_!_---'?_-:--o--_ ............................ ii_!ii!ii:!ii!!iii

so.._ ---_- --_- = ......rlA.... ijiiiiiiiiiiiiiiii
...........................__ ..............................iiiiiiiiiiiiii!iii_

Figure 2. Eckart Streaming in a Tube.

1 d_ (1--_-_2) --[1(1-
and

[( ( r2 ) (R)]
lr_'_ 1- +In

UE =--UE 1 2 R 2] -_

where the main streaming velocity UE in air is given by:

and co

acoustic velocity vo is of the order of Ma (krl) 2

UO

number defined as Ma = --
CO

rl < r < R (6)

1.98 v_ (krl) 2 (7)
UE- 4co

is the speed of sound. The ratio of the main streaming velocity to the

, where Ma is the acoustic Math

11



However, from Equation 3, the "slow streaming" solution given in Equation 7

is only valid outside the practical range for acoustic mixing in a PCCE combustor,

and the magnitude of the streaming velocity given by Equation 7 is usually too

small to produce effective mixing.

2.4.1.2. Fast Streaming

The result discussed in the section above means that "fast streaming" has

to be the dominant mixing mechanism if Eckart-type streaming is used in a

PCCE combustor. However, little work has been done to date on this problem.

Ivanovskii [20] and Statnikov [21] proposed a method valid for M_ _ 1 in which

they rewrite the equations of motion in a simplified form; they assume that the

acoustic variables can be expressed as the sum of a time invariant term and a

time variant term. Statnlkov solved these equations of motion for the simplified

case of a stable saw-tooth wave. Although Statnikov's solution is for a particular

case, his main results are repeated here since they illustrate the differences in

magnitude between "fast" and "slow streaming" velocities.

At sufficiently high sound pressure levels and at a certain distance from the

source, an acoustic wave assumes a stable, saw-tooth shape if viscous losses are

moderate compared to finite-amplitude effects ( Re :>> 1 ) (see Ref. [22] and [23]).

In this limited region, most of the wave attenuation is due to the presence of the

shock which arises from the finite amplitude effects, rather than from viscous

and thermal conduction losses. Using this stable, saw-tooth form for the acoustic

velocity in the simplified equations of motion, Statnikov showed that the "fast

streaming" velocity is given by Equations 5 and 6, where UE is replaced by U_f,

which is given by:

12



_f
uBf = -- UB (8)

as

where _8 is the attenuation due to viscous and thermal conduction losses ("slow

streaming"), and _f is the attenuation due to finite amplitude effects ("fast

streaming"). In air, _f is given by:

af = 1.2 Re a, (9)

For Re >> 1, the "fast streaming" velocity VEf is proportional to v03 and

is much larger than the "slow streaming" velocity fiE, which is proportional to

the acoustic intensity in the beam.

Again, one has to bear in mind that this solution is limited to the particular

case of a stable, saw-tooth wave where finite-amplitude losses are very high.

However, the point to be emphasized here is that, in both the "slow streaming"

and the "fast streaming" solutions above, the magnitude of the streaming velocity

is a direct function of dissipative losses, whether they are due to finite-amplitude

effects or viscous and thermal conduction effects.

2.4.2. Medium Scale Streaming (Rayleigh Streaming)

Rayleigh streaming can be considered a result of the absorption of sound by

viscosity at a solid boundary. Rayleigh [4] described the streaming motion in a

standing wave between parallel walls, showing that a secondary flow circulation

occurs between the walls in cells one-quarter wavelength long, as shown in

Figure 3. In a PCCE combustor, the circulation originates in the boundary-

layer vorticity generated by the no-slip condition on the tube surface and goes

from antinodes to nodes along the wall, and from node to antinode along the

13



tube axis. This mechanismalso causes recirculating regions behind solid bodies

in steady flows, as demonstrated experimentally by Andrade in 1931 [10]. The

scale of the vortices produced is equal to the sound wavelength.

...... _- ......................... \--f ............................ _-

Figure 3. Rayleigh Streaming in a Tube.

The Rayleigh streaming velocities in a tube of radius R are given by

Rozenberg [17]:

URz = URz I 1.-2 + ---_-- 2+3 cosx

(10)

and

2 2_Ve_X 3c°sx+sinx+2 e-xURr =URr 1-- + 3r

where URz and URr are given by:

(11)

URz -- 3 v_ sin(2kz) (12)
8 c o

X __

URr -- 3 v0_ kr cos(2kz) (13)
8 Co

(R - r) and 5v is the acoustic boundary-layer thickness equal to:
6v

14



The axial period of Rayleigh streaming is equal to

(14)

A

2" The ratio of Rayleigh

streaming velocity to acoustic velocity is of the order of the acoustic Mach number

Ma.

Medium Scale Streaming in a PCCE Combustor

From the definitions of Rayleigh streaming and Eckart streaming, it is clear

that both mechanisms do not coexist in a PCCE combustor and correspond to

different ranges of operations. As mentioned earlier, Eckart streaming can only

be achieved at very high frequencies where UE (see Equation 7) is much larger

than Urtz and URr. Rayleigh streaming, on the other hand, occurs at low

frequencies when the sound completely fills the combustor tube, and when the

Rayleigh streaming velocities given by Equations 12 and 13 are much higher than

the Eckart streaming velocity in Equation 7.

As in the case of Eckart streaming, the solution given by Equations 11 and 12

is only valid for sound fields such that Re << 1. It can be referred to as "slow

Rayleigh streaming". The validity of the "slow Rayleigh streaming" theory was

demonstrated by Andrade [10] in 1931. At very high sound pressure levels

(Re >> 1 ), "fast Rayleigh streaming" occurs where the flow patterns remain

unchanged, but the streaming velocities are much larger (up to several meters

per second). Streaming velocities nearly two orders of magnitude higher than

predicted by the "slow streaming" theory were obtained experimentally at high

sound pressure levels in air (see Ref. [24]).

15



In summary, medium scale Rayleigh streaming can be used to set up a

circulation in a PCCE combustor. This circulation entrains the particles, acting

as a mixing mechanism.

2.4.3. Small Scale Streaming

Small scale streaming refers to streaming vortices having a scale much smallcr

than the sound wavelength (see Refs [15], [17], and [26] to [31]), such as the

streaming which develops around each individual lycopodium particle.

As opposed to medium scale Rayleigh streaming, which acts as a particle

transport mechanism, small scale streaming in particle cloud mixing is important

for its effect on the interactions between lycopodium particles.

2.4.3.1. Conditions Necessary for the Presence of Small Scale

Streaming

It is obvious that in order for small-scale streaming to occur around an

obstacle, there must be a difference between the obstacle velocity and the velocity

of the gas around it. From the previous discussion on the entrainment rate, we

see that when the entrainment rate is low (high frequencies or particles with

high mass), there is a large velocity difference between the particles and the gas

and therefore, small scale streaming around the particles is important. When

the entrainment rate is high (low frequencies or low-mass particles), the velocity

difference is small and streaming around the particles is negligible.

2.4.3.2. Small Scale Streaming Inside the Boundary-Layer

The best known small scale streaming phenomenon is the streaming that

develops inside the boundary-layer along an obstacle in a sound field (Schlichting

16



streaming [25]). This streaming is the result of the large velocity gradients

inside the boundary-layer and has velocities which are of the same order as

Rayleigh streaming. However,since the thickness of the boundary-layer vortex

is approximately equal to 1.96v, this streaming is confined to an area very

close to the wall. In the caseof a PCCE combustor, the acoustic boundary-

layer 6_ is very small (76 x 10 -6 meters at 1 KHz). Therefore, small scale

streaming inside the boundary-layer along a PCCE combustor tube wall is not

an important mixing mechanism compared to Rayleigh streaming. However,

small scale streaming around each lycopodium particle can affect the mixing

process, as described in the next section.

2.4.3.3. Small Scale Streaming Around Particles

Small scale streaming around lycopodium particles results in attraction and

repulsion forces between particles which can, under certain conditions, be the

major contributor to the mixing process.

Due to the small radius of the particles and the large acoustic displacement

amplitudes, Schlichting's streaming theory inside the boundary-layer is no

longer valid (the average radius for lycopodium particles is about seven times

smaller than the acoustic boundary-layer thickness at 1 KHz, and the acoustic

displacement amplitude is of the order of the particle radius).

Andres and Ingard (see Refs. [29] and I30]) solved the problem of streaming

around a cylinder having a radius of the order of or smaller than, the acoustic

boundary-layer thickness. For conditions very close to the conditions in a PCCE

combustor, they showed that the thickness of the boundary-layer vortex is much

larger than the radius of the cylinder. They also revealed that the streaming

17



pattern resembles the pattern obtained in Rayleigh streaming on a large obstacle

outside the boundary-layer [15], with the direction of rotation of the vortices

reversed. A similar streaming pattern can be observed around each lycopodium

particle, as shown in Figure 4.

Figure 4.

Sound

Streaming around a Cylinder.

2.4.3.4. Powder Striations in a PCCE Combustor

As Andrade [11] has shown, when a relative motion between particles and

a gas is present (_ < 1 ), small scale streaming around those particles is

responsible for the dust striations observed in resonant tubes by many researchers

(see Refs. [33] to [41]). The striations, caused by attraction and repulsion

forces associated with the vortices, are parallel to the acoustic wave fronts, as

shown in Figure 5 (reproduced from Andrade's paper [11]). A picture of similar

18
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striations taken during PCCE mixing experiments is shown in Figure 6. In a

standing acoustic wave field, the well-marked striations are sometimes separated

]_y patches of quiescent powder indicating the acoustic nodes.

Figure 5. Dust Striations in a Resonant Pipe (from Andrade [11]).

Figure 6. Lycopodium Striations in a PCCE Combustor.

The distance between striations is such that vortices from particles in

adjacent striations just touch each other. Thus, spacing between striations is

proportional to the size of the vortices, which in turn is proportional to the

relative acoustic velocity between the p_rticles and the gas.

Thus, according to the previous discussion on entrainment rate (see Equa-

tion 1) and because small scale streaming is directly proportional to the relative
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acoustic velocity between the particles and the gas, large dense particles or high-

frequency operation is associated with vigorous vortex motion, while particles

having a small inertia or low-frequency operation results in little or no vortex

motion.

At high frequencies (above 1 KHz), the lycopodium striations in a PCCE

combustor are sharp and well-defined. As the frequency is decreased (below

1 KHz), the entrainment rate ( _ ) increases and the striations become blurry

and wider due to the particle motion.

2.4.3.5. Particle Motion Due to Small Scale Streaming

For a sound wave having a fixed frequency and a fixed amplitude, the position

of the dust ridges is fixed. Thus no mixing can be achieved through small scale

streaming in a steady state mode. However, fairly good mixing can be achieved

in a transient acoustic field if the powder is originally distributed regularly over

........... r__.

the length of the tubel a_ cies-cr_bed in a later section: ....

2.5. Radiation Pressure

Radiation pressure due to the sound field acts on each particle inside a PCCE

combustor and contributes to the overall motion and mixing of the particles. This

section gives a simple estimate of the radiation pressure force on lycopodium

particles, showing that this mechanism is usually small compared to streaming.

If the exact acoustic field around a spherical obstacle in a plane wave is

computed, including the effects of scattering, it is found that a steady pressure

on the sphere is generated by second order terms in the equation of state. In

King's classic analysis (see Ref. [32]), radiation pressure is associated not so much
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with steady secondary motion as with effects like the accumulation of particles

in an acoustic field at nodes or antinodes (antinodal disk) or the possibility of

suspending small objects against gravity (acoustic levitation).

The radiation pressure acting on a sphere having a radius a much smaller

than the wavelength A due to an incident plane wave results in a force given

by [17]:

llr R2 (kR)4pu2 (14)
Ft- 1--8-

For a sphere in a standing wave field given by:

u,(z,t) = u0sin (kz)e j_t

the force is given by:

; pl(z,t) = pcouocos(kz)e jwt (15)

5r R2 (kR)pu_sin (2kz) (16)

Thus in a standing wave field, the effect of radiation pressure is to carry

the particles towards the acoustic nodes (maximum acoustic velocity), where

they tend to accumulate. Although the sound field inside a PCCE combustor is

dominated by the standing wave, a small traveling wave component is present

due to the acoustic attenuation at the combustor walls. However, as shown by

Ft
calculating the ratio _, the force on a particle due to a traveling wave is much

smaller than the force due to a standing wave, except at a velocity node (zero

velocity).

We can estimate the velocity Urad of a particle under the action of radiation

pressure by assuming that it is equal to the velocity determined by the balance
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of radiation pressure and drag. According to Stokes' drag law, we have for a

standing wave:

Fs = 6_rp_, R Ura d (18)

This expression underestimates the total drag, and therefore overestimates

the velocity. Ura d is therefore given by:

5 kR2v_ sin(2kz) (19)
Urad -- 36

The ratio of radiation pressure velocity to Rayleigh streaming velocity is

given by:

Urad _ 10 (kR) coR (20)
uz 27

At 100 Hz the streaming for a lycopodium particle is 530 times stronger

than the radiation pressure, while at 5000 Hz, this ratio is 11. Thus radiation

pressure should not be an important contributor to the motion of the particles

since it only affects relatively large objects in the sound field. However, radiation

pressure seems to be responsible for a tendency of the powder to accumulate

rapidly at the end of the combustor, and opposite to the loudspeaker source (see

Sections 3 and 4).

2.6. Summary of Acoustic Mixing Mechanisms

The motion of lycopodium particles due to a sound field in a PCCE combustor

is affected by all the mechanisms described in the previous sections and is

summarized here. As Andrade [11] has shown, particle motion arising from a

sound field in a tube is an extremely complex phenomena mostly affected by
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medium and small scale streaming, and radiation pressure. Slight changes in

amplitude, frequency, particle size, or particle density result in totally different

powder patterns and motions, including such striking phenomenaas antinodal

disk and ring, and nodal eye formation.

In the caseof PCCE combustors, large scale streaming (Eckart streaming)

and radiation pressure are neglected, and only medium scale Rayleigh streaming

and small scale streaming are considered.

Rayleigh streaming is responsible for a circulation of the gas inside the

tube which entrains the particles, therefore mixing them. Small scale streaming

around lycopodium particles results in the formation of fixed powder striations.

For moderate frequencies and at a low acoustic level, "slow streaming" occurs

but is too weak to affect the particles. As the acoustic level is increased, vortex

motion around the particles due to small scale streaming becomes well-defined

and striations appear. As the acoustic level is further increased, "fast Rayleigh

streaming" become dominant, resulting in a general circulation which destroys

the striations.

At high frequencies (low entrainment rate), sharp striations containing all the

particles are present over a wide range of frequencies and acoustic levels. Only

at very high acoustic !evels does the circulation due to "fast Rayleigh streaming"

becomes dominant.

At low frequencies (high entrainment rate), the circulation due to medium

scale Rayleigh streaming is responsible for a node to antinode circulation and

clearance of the powder at the nodes. Striations due to small scale streaming

never appear or are blurred.
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This blurring of the striations was observed both by Andrade [11] (see

Figure 7) and during mixing experiments carried out at NASA Lewis using an

air pump system (see Figure 8).

Figure 7. Blurred Dust Striations in a Resonant Pipe (from Andrade [11]).

Figure 8. Blurred Lycopodium Striations in a PCCE Combustor, Air Pump Experiment.

In the pump experiment, a large amplitude acoustic wave having a frequency

of 30 Hz was generated inside a PCCE combustor using an air pump. As shown

in Figure 8, large widely-spaced %ells" were formed. These cells are in fact

striations which are blurred due to the motion of the lycopodium particles.

Similar cells are visible in Figure 7 from Andrade's paper [11].
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The previous discussion also explains the differences in motion observed when

particles of different size, such as smoke and lycopodium particles, are submitted

to a similar acoustic field.

In the case of smoke particles, the entrainment rate is very high and the

particles act as tracing points for medium scale streaming, which is the dominant

mixing mechanism.

In the case of lycopodium particles, the entrainment rate can be very small

(see Figure 1) and circulation and striations can be present at the same time.

2.6.1. Acoustic Mixing in a PCCE Combustor: Basic Principles

This section presents the basic principles of acoustic mixing in PCCE
x

combustors as they can be deduced from the previous discussion on streaming.

Particle mixing in a PCCE combustor using steady-state sound waves is a difficult

task for the reasons which follow:

By definition, an homogeneous mixture is obtained in the PCCE combustor

when the distribution of particles is uniform. Therefore, the forces acting on

each particle must be of the same order everywhere in the PCCE combustor to

avoid high concentrations of particles in certain areas of the combustor and low

concentrations in others.

When medium scale streaming is used as the primary mixing mechanism in

a steady state mode, the basic homogeneity requirement is not satisfied. This is

because medium scale streaming relies on the establishment of standing waves

inside the combustor. These standing waves are responsible for _structured" flow

circulation cells which result in a certain amount of mixing. However, as a result

of the "structured quality" of the sound field itself, a perfectly homogeneous
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particle cloud cannot be obtained. Therefore, perfect mixing using steady-

state acoustics is not feasible. However, "fairly good" mixing can be achieved

by carefully designing the sound source and carefully selecting its operating

conditions. The final crucial question is whether or not "fairly good mixing" is

enough for particle cloud combustion experiments. Although the answer at this

time is probably negative, indications are that sufficient mixing can be obtained

by combining steady-state and transient acoustic mixing methods as described

in more detail later in this report.

When small scale streaming is present in a steady state mode, it is obvious

that the formation of powder striations spaced at regular intervals parallel to the

wave fronts prevents good mixing from occuring.

One way to reduce the "structured quality" of the sound field would be to use

a random signal such as white noise to excite the loudspeaker source connected

to the combustor. However, the natural acoustic modes of the tube would still be

excited, thus resulting once again in a non-homogeneous sound field. Moreover,

medium scale streaming would not have time to develop because of the constantly

varying sound characteristics. In addition, the circulation would be very weak

because the acoustic energy in each frequency would be very small.

Pseudo-random noise such as a mono- or a multi-frequency signal randomly

and slowly varying in frequency and amplitude with time could probably be

used with more success than white noise for the following reason: First, the

changing characteristics of the signal would provide some of the randomness

and disorder needed. Next, the discrete character of the frequency spectrum

of the excitation signal would allow each harmonic component to be powerful
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enough to initiate a strong circulation. Finally, the slow rate of change in the

signal would leave enough time for the streaming patterns to establish themselves.

On the other hand, acoustic resonances in the PCCE combustor will limit the

useful range of amplitude and frequency variations that can be used, unless large

loudspeakers are used which can generate large acoustic levels at frequencies away

from resonance, or unless the frequency is stepped from one resonance frequency

to the other so as to keep the acoustic levels high.

Finally, transients have been used successfully in reducing the "structured

quality" of the sound field, as discussed in a later section. In this case, the

loudspeaker source is turned on and then turned off once the transient state

is over and the sound field in the PCCE combustor has built up to a steady

state. During the transient state, the motion of the particles results in a fairly

homogeneous cloud due to the continuously changing acoustic field. The time

duration of the transient can be adjusted by changing the acoustic attenuation

inside the PCCE combustor.

In the next section, the basic principles and results of high-frequency steady-

state mixing and low-frequency transient mixing are briefly presented. Due to

the limited nature of this research effort, no experiments were carried out using

random or pseudo-random excitation signals.

2.6.2. High-Frequency Steady-State Mixing

This report concentrates on high-frequency, steady-state mixing using

medium scale streaming. The principle is to set up a circulatory motion of

the powder perpendicular to the PCCE cylindrical combustor axis, as opposed

to the circulation in the axial direction obtained in low-frequency axial wave
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operation. This circulatory motion can be obtained by exciting high-frequency

spinning waves inside the PCCE combustor and is due to medium scale Rayleigh

streaming. If the spinning wave is excited at or just above its cut-off frequency,

the axial sound wavelength in the combustor is very large (much larger than the

sound wavelength}, which should increase the axial homogeneity of the sound

field. Striations due to small scale streaming appear perpendicular to the acoustic

wavefront as a result of the high frequencies. However, if the sound pressure

level in the PCCE combustor's is high enough (which is easily achieved if the

sound source is operated around the cut-off frequency of one of the combustor's

higher-order spinning modes}, the circulation due to medium scale streaming is

dominant and the striations are destroyed.

2.6.3. Low-Frequency Transient Mixing

As mentioned previously, "perfect" low-frequency mixing in a steady state

mode is impossible to achieve due to the axial inhomogeneities which are

necessarily present in the sound field. "Good" mixing has been achieved by

NASA Lewis researchers at low frequencies in a transient mode when the powder

was originally regularly distributed over the whole length of the combustor. The

main results of these tests are briefly reported here and a simple explanation

of their cause is given. It should be emphasized that these experiments

were performed in a micro-gravity environment, as opposed to the rest of the

experimental results presented in this report, which were carried out in a 1-g

environment.

In this experiment, carried out in one of the drop towers at NASA Lewis,

the low-frequency loudspeaker source (in the 100 Hz to 300 Hz range) is turned
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on for only a fraction of a second, therefore preventing the establishment of well-

defined medium scale streaming cells. Due to the low frequency of operation,

blurred ridges start to form at regular intervals from each other as soon as the

source is turned on (see Figure 9a). However, nearly immediately after the

ridges are formed, they combine two by two to form a second set of ridges with

a spacing twice the spacing of the first set of ridges (see Figure 9b). Formation

of a third set is barely perceptible; afterwards, mixing appears nearly complete,

which corresponds to the time when the transient state is over, and the sound

field in the PCCE combustor has built up to a steady state (see Figure 9c).

The most likely explanation for this mixing process is as follows. As soon

as the source is turned on, the acoustic level inside the tube starts to build

up through multiple reflections at the ends of the tube (see the last section

in this report on the analysis of the transient sound field in PCCE combustors).

During this build up process, small scale streaming occurs around each individual

particle, resulting in the formation of ridges. As the acoustic level inside the

PCCE combustor increases, so does the size of the vortices around each particle.

As a result, the ridges repel one another, resulting in the formation of new

ridges further apart from each other. Finally, at the end of the transient state,

the acoustic level and the time elapsed since the source was turned on are high

enough that the circulation due to medium scale streaming takes over, destroying

the ridges and creating mixing cells. Switching off the sound source just before

the mixing cells due to medium scale Rayleigh streaming are well-formed results

in a fairly homogeneous mixture of gas and particles.
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(a)

(b)

(c)

Figure 9. Low-F1-equency Transient Mixing in NASA Lewis Drop Tower.

(a): 0.08 seconds; (b): 0.16 seconds; (c): 0.21 seconds.
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In other words, during the transient state,the motion of the particlesresults

in a fairlyhomogeneous cloud due to the continuously changing acoustic field.

The time duration of the transient can have an effecton the quality of the

mixing and can be adjusted by changing the acoustic attenuation inside the

PCCE combustor.

A similar resultcould be achieved at higher frequencies,where the tendency

for ridges to form isstrong. Another alternativewhich should resultin very good

mixing is the use of a combination of low-frequency and high-frequency sound

sources both operated in a transient mode. Due to the good axial homogeneity

obtained with a spinning wave at a frequency close to itscut-offfrequency and an

usually long transienttime, itisbelieved that the combined use of high-frequency

spinning waves and low-frequency axialwaves in a transient mode would greatly

enhance the mixing process.

31



3. Analytical Work

The goal of the analytical work supporting the particle cloud experiment was

to identify the physical mechanisms which produce mixing in strong acoustic

fields and, specifically, to analyze mixing due to higher acoustic modes in a

cylindrical tube (quadrature-speaker mixing) and mixing in a sphere (acoustic

premix). These analyses will be presented in detail. More general and qualitative

discussions will also be given of some of the problems encountered during mixing

experiments using steady axial modes and of the often surprising results of micro-

gravity experiments using acoustic transients.

3.1. Summary of Analysis Results

3.1.1. Quadrature-Speaker Set

The quadrature-speaker set produces an acoustic progressive wave in the

tube. Rayleigh streaming leads to steady circulation around the tube as observed

experimentally.

The combined effect of the axial-speaker and the quadrature-speaker sets

should be simultaneous longitudinal and circumferential circulation. It was

difficult to assess the motion observed experimentally, but there was no doubt

that the simultaneous presence of two types of circulation resulted in greatly

enhanced mixing.

3.1.2. Acoustic Premix

Secondary circulation necessarily contains a nodal plane which separates the

sphere into two hemispheres between which powder cannot be transferred by
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steady motion. Complete mixing is only possible if the nodal plane can be so

arranged that it bisects the powder. Mixing in a hemisphere might be acceptable.

Otherwise, in micro-gravity, operation of the speaker in transient bursts might

cause a homogeneous mixture throughout the sphere.

There is no secondary motion possible for purely radial modes. Operation of

the speaker at the corresponding frequencies will result in no mixing.

3.1.3. Transient Axial Modes

The formation of blurred ridges is most probably due to small scale streaming

around each individual particle.

3.2. Acoustic Streaming: Theory

Because complete and detailed derivations of the general equations governing

acoustic streaming are widely available in the literature (see Ref. [42]), only a

summary will be presented here.

The theory of acoustic streaming is based on the compressible Navier-Stokes

equations with the linearized equation of state

p = c2p

appropriate to acoustic problems. Perturbation solutions of the form

are sought in which the superscripts indicate decreasing order of magnitude and

p(0) is constant.
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The first order equations for p(1) and U (1) are simply the equations of

acoustics including corrections for viscous effects. The equations for u (1) are

most easily solved by writing the equations for the first order compressibility

and vorticity,

8(1) =V.U (1)

fl (1) =V x u (1)

which are

02s(1)

Ot 2

Os(1)
c" V 2 s(') =l_u + u')V 2

Ot

On (1) V2 n(1)
Ot

Then u (1) can be recovered from $(1) and [2 (x) by solving the vector equation

(1)

V 2 U (1) ---_ V8 (I) -- V X ['_(1) (2)

Solutions of Equations 1 and 2 are readily expressed in terms of eigenfunctions

of the scalar and vector Laplacian, that is, solutions of

(3)

In fact, direct substitution shows that there are solutions of Equation 1 of the

form

s(')=e_t¢

i2(1)=eiWtA (4)

and, because of the eigenfunction Conditions given in Equation 3,
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iv n(I)u(I)=- v80)+_2 x (s)

Eigenfunctions for the scalarLapla_ian are wellknown for a number of coordinate

systems; the corresponding eigenfunctions for the vector Laplacian are less

familiar, hut can easily be found for the cylindricaland spherical coordinate

systems.

Next consider the second order equations for u (2). As expected in a

perturbation expansion of a quadratically nonlinear theory, the second order

equations contain source terms which are quadratic in the solutions of the first

order equations. Thus, if the first order terms depend on time harmonically

with frequency w, the source terms in the second order theory can have

frequencies co ± w -- 2co, 0. The frequency 2w corresponds to a higher order

acoustic phenomenon; streaming is the steady phenomenon corresponding to the

frequency zero.

Specifically, the perturbation method to the equation

V2n (2) = -V x (uO)x fl(1))

I/ (apC')lat)CpCO))2- +.:,,,(.) ×v
(:O)V x £_(0)

--VX
p(o)

(6)

for the second order vorticity field. Only the steady terms are to be included

on the right side. Retention of only the first source term produces the theory of

Rayleigh streaming (see Refs. [42] and [43]):

V 2 12(2) = -V x (uO)x 13(I))

12

35



and retention of only the second term produces the theory of Eckart streaming

(see Refs. [19] and [42]):

,,,o<2> - (p(o))2

A thorough discussion of these alternative theories appears in Ref. [42],

in which the third source term in Equation 6 is also considered. Briefly, the

pertinent facts are these. In Rayleigh's theory, second order vorticity requires a

rotational first order acoustic field for which fl(1) is nonzero. Acoustic fields are

ordinarily treated as irrotational; however, vorticity can be introduced into the

acoustic field by the no-slip condition at a solid surface. In this case, although the

effects of vorticity are indeed confined to a small boundary layer, this boundary

layer acts as a vorticity source in the second order theory. In Eckart's theory, the

source of second order vorticity is the oscillations of the first order mass density;

for this reason, Eckart streaming is also called bulk streaming.

It is useful to compare the magnitudes of the source terms in Equation 6. Let

u be a representative velocity in the acoustic field, and let u_ be the frequency

and k the wavenumber, so that w = ck. Then for the Rayleigh term, f_ N ku and

u2 k 2
v-iV x (u x n) ~

V

To estimate the Eckart term, note that the first order continuity equation

Op(I)
+ p(°)V • u (I) = 0 (7)

Ot

implies wp (1) p(°)ku, or p(1) ~ P (°)u,_ . Therefore,
c

vpO ×v k s
u_=__ 2

(p(o))2 c
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It is easy to check that the third source term in Equation 6 is also estimated

by this expression. The ratio of the Rayleigh source strength to the Eckart source

strength is therefore

k 2 v 2 c c

u k 3 u 2 uk

c

For air at 15 ° C, _-_ N 240,000. cm -1. Only for extremely short waves will

the Eckart source term nearly equal the Rayleigh source term [42]. Thus, in cases

in which both Rayleigh and Eckart streaming are possible, it is most likely that

Rayleigh streaming will be the dominant mechanism.

3.3. Secondary Motion in Axial Wave Fields

Mixing experiments using lycopodium powder showed an undesirable ten-

dency of the powder to accumulate rapidly at the end of the tube and only

afterwards to circulate in a cell much smaller than the tube length. The results

are at variance with the experiments of Andrade [10], who observed steady

circulation of the type predicted by Rayleigh [43], in which the circulation cells

fill the tube completely.

The differences between these observations can be attributed to radiation

pressure. For spheres much smaller than the wavelength, radiation pressure in a

progressive wave varies as the sixth power of the radius. Thus, if a denotes the

radius of the sphere, Newton's equation takes the form

d2x _ a e . a s
pa 8 dt--_

In Andrade's experiments, smoke particles were used to trace the secondary

motion. Andrade assumed
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g
p,-- 1--

cm 3

For lycopodium powder,

a --- 5 x 10-5cm

p ,-, 1 _ a ,_ 2 x 10-4cm
cm 3

Thus, if the effects of multiple scattering can be ignored, the accelerations

due to radiation pressure are about 3000 times greater for lycopodium than for

smoke. This difference is enhanced by a fundamental distinction between motion

due to streaming and motion due to radiation pressure: in the first case, the

particles follow the bulk motion of the fluid, but in the second, they are pushed

through the fluid which may otherwise be at rest. Thus, viscosity will oppose the

motion of smoke particles much more effectively than the motion of lycop0dium

particles.

It may be assumed that the speaker generates a progressive wave

p = po cos(_t - k:r,)

If sound is not absorbed by viscous dissipation and is fully reflected at the

opposite end, the result is a standing wave:

p : .0 cos(_t- k_)+ ,o cos(_t+ k_)=p0cos(_t)cos(kx)

But suppose that the sound field is the result of imperfect reflection:

p =pocos(_t- k_)+ rp0cos(_t+ k_)

= rpocos(_t)cos(k_)+ (1- r) pocos(_t- kx), r<l (1)
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This fieldcontains a progressive wave component which, while possibly very

small, could have a significanteffecton lycopodium. It is conceivable that the

radiation pressure due to this progressive wave sufficesto cause the observed

driftaway from the speaker.

Imperfect reflectioncould be caused by sound being absorbed by viscosity(in

thiscase, the pressure fieldshould contain exponential damping). This effectis

not controllable.However, imperfect reflectionwillcertainlybe increased by the

presence of nonconservative boundary conditions likethe impedance conditions

characteristicof membrane terminations. The effectof imperfect reflectionwas

clearlydemonstrated in experiments using an anechoic termination, for which in

Equation 1, r = 0. There was a noticeable driftaway from the speaker, even in

higher-order modes with presumably small axial components.

Itis likelythat driftcan be minimized by using conservative end .conditions,

such as perfectly rigid or pressure release conditions, even if it cannot be

eliminated entirely.

3.4. Streaming due to Higher-Order Modes in a Cylindrical Tube

The simplest acoustic mode in a finitecylinder is the axial standing wave

characterized by pressure variation of the form

p :pocos( nt)cos(knz)

W n IC k n

The values of kn are determined by the pipe length and boundary conditions.

Here and in what follows, arbitrary phase angles are understood to be permissible

in the trigonometric functions, but are omitted to lighten the notation.
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More complex modes, solutions of the full three-dimensional wave equation,

are also possible [42]. These modes can be either progressive or standing waves

in the 8 coordinate. The pressure varies as

p =pocos( m.t- .0) cos(kz)J (km.r)

p =p0cos(   t) cos(.0)co (kz)Jn(k  r)
22 =c2(k 2 + k,,,.)W rn rt

(progressive)

(standing)

(1)

The km,_ are roots of the equation J_(km_,R) = 0, where R equals the cylinder

radius. The progressive wave has a definite helicity and the standing wave can

be considered the superposition of two progressive waves with opposite helicity.

These modes are entirely analogous to electromagnetic waveguide modes [44] and

can also be considered to arise from repeated reflections from the cylinder wall

(see Refs. [441 and [451).

The quadrature-speaker arrangement is designed to excite such modes,

specifically the mode rt = 1, m = 0, which has the smallest cutoff frequency [45],

w01 = c k01. The modes with n = 0 have no 0 dependence or $ velocity

component. These modes satisfy the no slip conditions. When n > 0, the

exact mode shape, including viscous effects, must be determined as outlined in

Section 3.2. Both standing and progressive waves will be analyzed, although the

asymmetry of the quadrature-speaker arrangement and the observed streaming

patterns suggest that the quadrature-speaker set excite a progressive wave, not

a standing wave. It is reasonable to assume that the helicity and phase of the

progressive wave are determined by the phase lag between the speakers in the

quadrature-speaker set.

4o



To compute the first order velocity field, let ur, uo, uz be cylindrical unit

vectors, and note that the independence of uz of the coordinates implies that

¢ ttz is an eigenfunction of the vector Laplacian whenever ¢ is an eigenfunction

of the scalar Laplacian:

v_(¢=,) = (v=¢) =, = -_¢=.

Now consider a cutoff mode for which kz = 0 (see Ref. [451),

s =A e-i_teine Jn(l_r)

fl =B e-i°'t e i'_° Jn(l' r)uz

(2)

(3)

so that

v_s = _(l,,)_s v_n = _(l,)2n

Progressive waves are obtained by taking real parts of Equations 2 and 3,

and standing waves result from superposition of progressive waves. The governing

equation (Equation 1, Section 3.2) reduces to scalar equations relating w, l_, l':

iw = (l')2t, ' (4)

-_ + ,_(t")_ - i,,,(t")_(,,,+ ,,,')= o

Equation 5 can be rewritten as

(5)

o = -0, 2 + e2(/")2{1 iw(r, + v'),:_ } (6)

The inviscid solution for s is defined by Equation 2 with I" w=-; Equation 6
e

shows that the viscous corrections to this relation ere of the order of the small

wu

quantity --_-. Therefore, as a first approximation, assume
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l# # __-- (.O

c

l' =_ (7)

The second equation is exact. The first order velocity is found from

VO ) (_)u w= - V8 + _ V x 12(I)
$w

Explicitly, in terms of scalar components

v(,) [_,Aj,(_ -tV_- )

o<,> .-,.,.,.0
[j, i,OR.(qT)

in which a convenient redefinition of the unknown

e-i_teinO

e-iwiein$

constant B has been

introduced.

The no slip boundary condition, V (l) = Ve(1) = 0 when r = R leads in

standard fashion to a determinant equation for w. But it is consistent with the

approximation in Equation 7 to assume that the frequencies w are determined

by the inviscid relation [45]

with corrections of order _
C

:0
--. The no slip boundary conditions are satisfied to

this order by
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_ jn[,,,.'_ j, f _
_ IR t--g-} '_,V _r) e-i_te i"°

j f i/-_r_

v.,,,:v _ _ _o(_)+,z-. ,. (v_ ),o.-'",'"' /_l
• -j / fi_-_,.'_

r_,)=vv_ [""kV_'-J ],-,,,,te.,O

in which ge (l) = 0 when r = R exactly, but VO) is of the order of the small
f

quantity V/_-_ when r = R.

As expected, the corrections in Equation 8 to the inviscid solution, which

are given by the Bessel function ratios with complex arguments, are boundary

layers significant only when r is near R. This can be seen from the asymptotic

expansions for the Bessel functions [46], which imply

.,'(dR)

"(¢7R)

,..,eV/_ (n-r)(1 -i)

..._,_c,',-,._c,-,:_ (o)
lg

Since
RV_ is quite large, these approximations are numerically quite accurate.

Progressive waves are found by taking the real or imaginary parts in

Equation 8. It is convenient at the same time to substitute the asymptotic

expansions given in Equation 9. The result is
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r "_. c ]

V (1) --,V _ sin(-wt + nO)
J- (--U)

n V_(R_,)sin(_wt + nO + -4+ - e - R-,'))
r

a__),_v e_(R-%in(-_o/+ nO+ _ - (R - '9)

(10)

Analogous results for standing waves are obtained by first adding the

solutions in Equation 8 with the values +n. This operation corresponds to

superposing progressive waves with opposite helicities. Then, taking real parts,

j {_r_
Vo0) ,-.,V R -_.cosCwt) cos(nO)

r J._--_-)

--ev/-(_(R-r)cos(nO) cos(wt + _U_(R- r)) )

n j! {wrl

Vr (1) "-'V { o3/I: -"_ cos(wt)sin(n0)nc J-(-r)

+ n_vq(R-')sin(,_o)cos(,,,t+ _ + (R- '9)

n_I) _.v cvff:-(R-')cos(n0)cos(,,,t+ _ + (R - ,))

(11)

The source strength for Rayleigh streaming is given by

V x V (1) x f_O) - _{1--- r Or' r z , + ; OO(V_ 1)a(zl))) 'u'z
L/rV. (1)a(1)_

1 a

Only steady terms are retained in evaluating the products. Thus, for the

progressive waves
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,LT;.,

V x V (1) x fl (1) = V2V_ ex/'_(R-r) F(r)uz

and for the standing waves

V (x) x fl (x) = v2w_ _ e v/_(R-r) G(r) sin(2n0)uzV X

The explicit expressions for F and G are bulky and unilluminating; the

exponential factors which obviously persist throughout the calculation have been

retained to emphasize the fact that both source terms are boundary layers.

The secondary vorticity is found by solving the Rayleigh streaming equation,

V2_"_(2) :. __! V X (V (1) x _'_(1)) (14)
V

derived in Section 3.2. Substituting Equation 12 into Equation 14, the secondary

vorticity for progressive waves has the form

n(2)= A(r)e4 - + C (lS)

in which the first term represents a particular solution of Equation 14 and the

second term is the part of the homogeneous solution which will be required to

satisfy the no slip boundary condition on V (2) . Similarly, for standing waves,

1"1(2) -- B(r) eV/-_(R-r)sin(2nO)uz + Dr'nsin(2nO)uz (16)

The secondary flow corresponding to Equations 15 and 16 can be evaluated

as follows. Since the secondary flow is incompressible, there is a vector potential

A such that

V (2) -- V x A (17)

where A satisfies
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fl (2) = V × V (2)

= -V 2 A

In view of Equation 15, fl (2) has the form

in which a(r)

n (2) = a(r) uz + Cux

is a boundary layer. Therefore,

1

A = b(r) Uz- -_Cr 2 uz

where b(r) satisfies

1 d db
r -- a

r dr dr

This equation can be solved by quadratures. Write the general solution as

b = c(r) + Co In(r) + Cl

The logarithmic term would introduce a singularity and the constant term

disappears:when the curl is taken in Equation 14. It is therefore sufficient to

assume Co = cl = 0. Thus,

1]V (2)= -b'(r)+_Ur us (18)

and defining C by

c=2b'(R)
R

the no slip boundary condition is satisfied.

Except for the boundary layer correction represented by the term b(r), the

secondary motion is simply a rigid rotation about the center of the tube. This
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is not a laminar flow of the familiar type because it is produced by the body

forces generated by the acoustic field. The qualitatively important feature of this

secondary flow is that it spins the particles around circular paths throughout the

tube.

The secondary motion due to standing waves is quite different. Without

insisting on details, it is clear that in the analysis leading to Equation 18, the

trigonometric factor persists. It produces a secondary flow of the form

[v ]V(2)= +2(n_l) r2n+l cos(2nO) Ur

[ 1 D r'"+'] sin(2nO) uo- +

In this case, the 0 velocity component vanishes along the 4n symmetrically

spaced rays through the origin defined by sin(2n0) - 0. The tube is

therefore partitioned by nodal planes into regions across which powder cannot be

transferred. This secondary motion would obviously be extremely unfavorable

for mixing.

There is no doubt that the quadrature-speaker arrangement produced

secondary motion of the type associated with progressive waves. Indeed, it is

difficult to imagine how the asymmetric quadrature-speaker arrangement could

produce standing waves. Extremely carefully adjusted dual quadrature-speaker

sets might produce standing waves through interference of progressive waves of

opposite helicity, but it is much more likely that only symmetric sources, like a

line source along the top of the tube, could actually produce standing waves.

The analysis includes as a special case the purely radial acoustic modes

in which the particles oscillate along lines through the center of the tube.

The inviscid forms of these modes automatically satisfy the no slip boundary
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conditions and therefore require no viscous corrections. They are obtained

analytically by setting r_ = 0 throughout. In particular, Equation 13 shows,

as expected, that there is no secondary vorticity. Therefore, Rayleigh streaming

is not possible, but Eckart streaming is also impossible. Consider the Eckart

streaming source term, Equation 6 (Section 3.2) for any mode in which the time

and space dependence separate; for example,

pC1) = cos (wt) F

with F a function of the space variables only. Then, necessarily,

0p(1)

Vp (1) xV Ot - wcos(wt) sin(wt) VFxVF

=0

Thus Eckart streaming is possible only in progressive modes. The radial acoustic

modes necessarily have the separated form cos (wt) F(r) of standing waves, so

that Eckart streaming is impossible. Moreover, since 12(1) = 0, the third term

in Equation 6 (Section 3.2) is also zero.

The conclusion is that there is no secondary motion associated with these

modes. However, the extremely high frequencies required to excite them ruled

out experimental investigation of this prediction.

This analysis has assumed that a cut-off mode is excited. The acoustic field

in these modes, and hence the secondary motion, is the same in every axial

cross-section of the tubel Experimentally, modes with frequencies slightly higher

than the cutoff are excited. These modes are not axially homogeneous; this is

expressed analytically by axial sinusoidal variation of the acoustic field. The

effect of this variation on the secondary motion is easily assessed; the particles

move along the same circular paths in a progressive wave field, but the velocity.
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varies with axial position. In particular, regions of low velocity can develop so

that the circulation may not extend throughout the tube. Axial nodes may even

develop. The circulation will be in opposite directions on both sides of such a

node. Both effects have been observed experimentally; in particular, circulation

throughout the entire tube was never achieved.

3.5. Mixing due to Combined Axial and Spinning Modes

The vorticity source term in the Rayleigh streaming theory is quadratically

nonlinear in the first order field quantities:

V212 (2) ,-,-,V × ('u (1) x 1"1(1)) (1)

Suppose that the first order field is a superposition:

v(' =v_') + Vb(_)

n(') :#_') + #_')

Such equations describe the field due to simultaneous operations of an axial-

speaker and a quadrature-speaker set. Then the vorticity source is proportional

to the curl of the steady part of

v_, xn_'_+v/,I xn_'>+v_')xn_"+v/" xn_'>

The first two terms are produced by each first order field acting separately,

and the second two are interaction terms. But these interaction terms are

retained only if they have the same frequency; otherwise, they do not contribute

to the steady part. Thus, the difference between streaming due to progressive

waves and standing waves can be described as an interaction effect: a standing

4g



wave is the superposition of two progressive waves at the same frequency, and a

progressive wave is the superposition of two standing waves at the same frequency.

On the other hand, the frequencies of the axlal-speaker and the quadrature-

speaker set are quite different. Interaction would only be possible between the

spinning mode and a very high order harmonic of the axial mode. This interaction

seems unlikely.

The conclusion is that, if the first order fields superpose linearly due to the

axial-speaker and the quadrature-speaker set, the secondary vorticity sources also

superpose linearly. The result of this superposltion would be an helical secondary

velocity field in which the particles simultaneously rotate around the tube

circumference and move along axial circulation cells. This simultaneous motion

should produce greatly enhanced mixing. This was observed experimentally,

although the complexity of the particle motions precluded even qualitative

statements about the particle paths.

A possibility which perhaps deserves further consideration is that the first

order acoustic fields interact nonlinearly to produce a more complex first order

field. Nonlinear self-interaction of a finite amplitude sound wave is a well known

phenomenon which leads to steepening of the waveform. The corresponding

problem for finite amplitude spinning modes is addressed in Ref. [47]. However,

the interaction between finite amplitude axial and spinning modes does not

appear to have been studied, and may be important for this case of particle

cloud mixing.

3.6. Acoustic Streaming in a Sphere
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The analysis of streaming in a sphere presents no conceptually new features;

naturally however, the details are somewhat more elaborate. Explicit formulas

in the streaming calculation will necessarily be bulky and somewhat opaque.

Nevertheless, it will be possible to use these expressions to answer several

questions about streaming in a sphere.

1. Does a streaming velocity field exist with 0 component everywhere

negative? Such a streaming field would fill the sphere with powder even

if all the powder began at the bottom of the sphere.

2. Experiments showed that for some modes, the powder was active when

the speaker was 180 ° away, the normal configuration, but quiescent

when it was 90 ° away. For other modes, this relationship was reversed.

This suggests the possibility of a streaming velocity field in which the

r component of streaming changes sign from 0 = 180 ° to 0 -- 90 °. Do

streaming modes with this property exist?

3. Is the sphere divided into circulation cells by planes through the lines of

longitude? Alternatively, could a streaming field exist with ¢ component

everywhere of one sign?

The analysis begins as usual with the evaluation of the exact first order

velocity field. Eigenfunctions of the scalar Laplacian are expressed in standard

notation [45] as

¢ = j,,,(k,.) Pg(cos0) e'"* (1)

so that
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Irrotational progressiveand standing waves in a sphere are defined by

p =po cosC_t- nO)j,,,Ckr)P_(cos0)

p =po cos(o_t)cos(nO)jm(kr) P_(cosO)

(progressive)

(standing)

Eigenfunctions of the vector Laplacian can be found as follows. Let

a a a 8 8

R= = Y-_z - Z-_y, Ry = z-_-_x - a: a----_, R, = a:-_vy - Y_x

denote the infinitesimal operators for rotations about the coordinate axes.

Then Rz@, Ry@, and Rz_ are obviously eigenfunctions of the scalar Laplacian

whenever @ is. The vector

B = (R=i + Ryj + R_,k)@

is spherically symmetric and is obviously an eigenfunction of the vector Laplacian.

But a simple computation shows

B = V x (x¢i + yCj + zCk) = V x (rCu,)

With _ defined by Equation 1,

V_B = -k2B

Therefore also

V_V × B = -k2V × B

It follows-that V x (r¢)u, and V x V x (re)u, are both eigenfunctions of

the vector Laplacian [44].
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The evaluation of modes satisfying the no slip boundary conditions closely

follows the analogous computation in the cylindrical coordinate system. Define

the functions

(wr) pmn (cos0) ei_tein¢#=J_ T

_ =jm ( _f_ r) Pr_ (cosO) eiWt ein¢

and set s 0) =A_

fl (1) =BV x (r_ur)

Then

¢2

V(1) = -A_ -¢Vs(1) + B'V---Vtw x fl (1)

As in the calculation in cylindrical coordinates, viscous corrections to the

frequencies will be ignored; the frequencies are therefore roots of the equation

., t'wR_
_mV-_) =o

Modes which approximately satisfy the no slip boundary conditions are

[_ J(_)v_')=v j(_)
• 1 • io_ rJ t,V; )+;

\V v /

+
R j(_)

[ c_Rw -l [ wr _

2 [T]

v/')=v j(_) +
n(n + 1)

• '" (,_R3

j(,_r3
kVV /

r i_o "l io, R

p¢i_tein_
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\ V v ] dP eiWt ein¢n (_1) =iv W__
V iw "t ira R 1 • iw

In order to lighten the notation, the indices on the spherical Bessel functions,
F-----

and frequencies have been omitted. Since R_f_ isLegendre polynomials, small,

the Bessel function ratios with complex arguments can be approximated by

'3 r + rJkv v /

i_ "t iw 1 • iw

ira "! ioJ 1 • ioJ

,..,eV_ (n-r)(1-1)

i

The progressive waves are found by taking real and imaginary parts in

Equation 2:

J(_) cos(wt + n¢)

- eV/_(R-r)cos(wt + nO -- (R - r)) d--ff

j(_t)

- - (R - ,.)) _-i-_-_o

n (n -t- 1) ./-'_-v+ eV_(R-r) sin(wt
V_r

--- R-r P
4

(3)
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eV/_'(R-r) sin(wt + n¢ _ (R - r)) sin0

r _ dPeV/_-'¢R-r) sin(wt + n¢ + _ - (R - r)) dO

Standing waves are found by superposing solutions in Equation 2 with values

:t=n and taking real and imaginary parts:

- - (R - r))cos(n¢) _-_

- - (R- r)) sin(,,¢) sin0 (4)

V_(1) ~V I-

n2 _1cos(he) e_/_f*(R-')sin(wt _ (R-r))
r

+ n - sin(he) eV/__(R-r) cos(wt - - R - r) Pr

_v_.'c_-')cos(_t _ (R- r)) sinO

_r V_ dPeV/_.(R-r)sin(wt + _- (R- r)) _-

In computing the secondary velocity, the second order compressibility will

be ignored. This approximation can be justified by Rayleigh's calculation for

axial standing waves [43], which showed that the second order compressibility

was indeed negligible compared to the second order vorticity components, but it
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also seems reasonable a priori in any case.

Equation 6, (Section 3.2),

V4V (2) =

Thus, taking the curl of Rayleigh's

V x V x (VO) x nO)) (5)
b,'

Consider the modes with n = 0. Explicit calculation using Equation 4 shows

that the source term in Equation 5 has the form

dP dP d2P+u0 C(r) P-_ + D(r) dO dO2 (6)

As in cylindrical coordinates, the functions A(r),. -D(r) are boundary layers,

but their exact dependence on r will have no importance in the analysis,

The Legendre polynomials are alternately odd and even functions of 0 - -f"2"

Pg = 1 pO = cos0 pO = 3cos20 _ 1,..-

The source strength for secondary motion vanishes for P0 as expected: such

acoustic modes are purely radial, they satisfy the no slip conditions exactly, and

they therefore require no viscous corrections. For the nonradial modes which

contain Pro, rn _> 1, the 0 component of the source strength is always an odd

function of 0 - r._, it is the product of consecutive order derivatives one of which

must be odd and the other even, regardless of the parity of Pro. In fact, it is

easy to check that this component always contains the factor sin0 cos0, which

vanishes on the equatorial plane 0 = r It foii0ws that both the particular and7"

homogeneous solutions for V (s) required by Equation 5 must also vanish on the

equatorial plane; in particular, the homogeneous solution is a superposition of

modes of the form
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v × v × [,-PhCcos0)

The secondary velocity field therefore has 8 vanishing 0 component on the

equatorial plane 0 = _, along which u0 is the normal vector. The secondary

velocity is tangential to this plane; therefore, the secondary streamlines remain

either in the northern or the southern hemisphere. Steady streaming could not

move powder between them.

The next question is whether this behavior also occurs in the modes n __ 1.

In the first place, it is obvious from Equations 3 and 4 that progressive and

standing waves do not differ in this respect since their 0 dependence is identical.

The 0 component of the source term in Equation 5 is given by

rsinO 0¢ rsinO (sinOVrflO)+ (v,.n_)

+- (rWn_) ÷ (von_- v_no)

Evaluating the 0 dependence of these terms separately,

1 0 2 1 dP

r2sin20 0¢00 (sinOVrl2°) _sin2---O P d_-

1 0 2 1 dP

r2sin20 0¢ 2 (Vrl2¢)_sin2---- _ P d-O

1 0 2 1 dP

r Or 2 (rVrf_¢) ,-,sin2-----_ P d--O

1 0 2 _ 0 dP 2 p 2, o,ooC oo -v,o.)
Since sin20 is an even function, all of these terms are obviously odd, except

for the last one. But P._(cosO) is the product of sin0 and an odd or an even

function; therefore, the last term is necessarily odd as well.
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This discussion answers the first question negatively. Steady Rayleigh

streaming in a sphere, whether due to standing or to progressive waves,

necessarily separates the sphere into noncommunicating hemispheres. The

addition of a second speaker would only change the position of the nodal

plane. Unless the speakers and powder can be arranged so that the nodal plane

bisects the powder, complete mixing throughout the sphere by steady Rayleigh

streaming is not possible.

It must not be concluded, however, that mixing in a sphere is unsuitable for

particle cloud experiment. In the first place, in micro-gravity, the particles will

continue in straight lines along their instantaneous velocity vectors if the speaker

is turned off. By operating the speaker in bursts, the particles could certainly be

made to migrate from the southern to the northern hemisphere. Second, powder

must be removed from the sphere to the combustion tube in any case. Well-mlxed

powder occupying only half the sphere could therefore be entirely satisfactory.

A related question concerns the possible existence of radial circulation cells.

As in the analysis of streaming in a cylinder, the preliminary conclusion is

that such cells will not occur because the secondary vorticity source 12(2) is

concentrated at the surface of the sphere.

The analysis also answers the second question. Namely, consider the acoustic

modes m = 1, rt = 0 containing the function pO. For these modes, the particular

and homogeneous solutions for V (2) contain contributions from the mode

'_ × W × (rjP°ur) = urA(r)(3cos20 - 1) :4- uoB(r)sin(20)

in which the r component changes sign from 0 = 180 ° to 0 = 90 °. Clearly, if the

r component of secondary velocity is positive, the powder is pushed toward the
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wall, and if it is negative, the powder is drawn into the sphere. In the first case,

the powder is quiescent; in the second case, it is active. Thus, depending on the

sign of A(r), it is possible for the powder to be active when it is 180 ° from the

speaker and quiescent at 90 ° from the speaker, or for the behavior at these two

angles to be interchanged. Naturally, this sign change in the r component occurs

more generally. It can be checked, for example, for the acoustic modes m = 3,

n--0.

Comparison of Equations 3 and 4 at once answers the third question. It

is evident that dependence of the first order quantities on the angle ¢ in

spherical coordinates resembles in every respect their dependence on the angle 0

in cylindrical coordinates. Thus, progressive acoustic modes generate secondary

flows which circulate around parallels of latitude, whereas standing waves cause

the familiar quarter-wavelength behavior which partitions the sphere into 4m

circulation cells. Provided that each cell contains the same amount of powder

initially, this partitioning will not prevent satisfactory mixing. This condition

appears to be satisfied by the experimental set up with the speaker and powder at

antinodal points so that the cell boundaries are planes through the line connecting

these points.

Left partially unanswered was the question of whether steady streaming could

fill the sphere if the nodal plane could be made to bisect the powder initially.

The second and third questions are both relevant to the possible success of such

an attempt. First, it would be preferable to arrange a negative r component of

secondary velocity around the powder. Second, a nonzero ¢ component free of

circulation cells is necessary. This completely rules out using any of the modes
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n = 0 and also requires the use of progressive waves. Symmetry considerations

strongly suggest that a single speaker generates standing waves, so that a dual

speaker arrangement could be mandatory. But it is not obvious in advance where

the corresponding nodal equatorial plane will be located; this would have to be

determined either analytically or experimentally.
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4. Experimental Work

Several experiments were conducted in a two-inch diameter cylindrical Lexan

combustor to investigate the feasibility of acoustic mixing of lycopodium powder

in a micro-gravity environment. Smoke was used to visualize the flow patterns

due to acoustic streaming for different frequencies, amplitudes, phase angles

between loudspeakers, and combustor terminations. These experiments were

also repeated using lycopodium particles to test the effectiveness of the mixing

process.

This study mainly concentrates on the effect of high-frequency, higher-order

modes (i.e., where sound wavelength is shorter than the radius of the combustor

pipe) on the mixing process. All of the tests were carried out at 1-g.

A quadrature-speaker arrangement was used first. This set up consists of

a rudimentary spinning mode synthesizer designed to excite non-axial high-

frequency spinning waves in the combustor. It results in a fairly homogeneous

sound field in the combustor axial direction.

Next, several configurations were tested, including two opposite sets of

quadrature-speaker; an axial-speaker and quadrature-speaker set combination;

and anechoic, reflecting, and pressure release terminations.

Finally, mixing experiments were conducted in a seven-inch diameter sphere

to study the effect of several higher-order modes on the mixing process and to

examine the feasibility of using a sphere for the pre-mixing of particles. This test

was also used to give us better insight into the physics of the acoustic mixing

process.
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4.1. Experimental Setup

4.1.1. Quadrature-Speaker Experiments

The first experimental setup is shown in Figure 10. The quadrature-

speaker set consists of two 908-8B Altec Lansing compression driver loudspeakers

mounted at a 90 ° angle from each other. The high efficiency and high power

rating of these drivers (30 to 100 Watts) allow sound pressure levels of up

to 150 dB inside the combustor in the 1 KHz to 10 KHz frequency range.

This provides enough acoustic energy to induce the relatively large lycopodium

particles to move within an 1-g environment. Each loudspeaker is driven by a

wave generator and an amplifier. Voltages across the drivers are monitored by

two digital voltmeters (DVM) to ensure that no excessive loads are applied to

the loudspeakers. The relative phase between loudspeakers is conl_rolled by a

phase-lock wave generator.

The sound field inside the combustor is monitored using several flush-

mounted Endevco Model 8510 five-psi pressure transducers connected to a set

of signal conditioners, filters, and amplifiers. An FFT analyzer, an oscilloscope,

a frequency counter, and a DVM are used to analyze the amplitude and phase

characteristics of the transducers signals.

A radial and an axial microphone probe were designed to measure the

three-dimensional sound field in the combustor two-inch pipe. The 35-inch

axial probe can be moved along the combustor centerline to measure the axial

sound pressure distribution, the axial wavelength, and the magnitude of the

axial standing wave. The 2_-inch radial probe can be moved along one of the
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combustor radial lines (i.e., in the cross sectional plane and through the pipe

center) to measure the radial sound pressure distribution. The radial probe is

used for modal identification of the sound field, thus allowing us to distinguish

among spinning, radial, and plane-wave modes. Accurate measurement of the

combustor resonance frequencies can be made using the microphone probes and

the frequency counter.

In the case of the smoke experiments, cigarette smoke was introduced using

ports located near microphones 1, 2, and 4.

Another experiment was performed using two sets of quadrature-speaker

mounted at each end of the combustor (see Figure 11, Part 2).

4.1.2. Axial-Speaker and Quadrature-Speaker Experiment

The third experimental set up is shown in Figure 12. It is similar to the

quadrature-speaker experiment except for the addition of a low frequency axial-

speaker mounted behind the quadrature-speaker set. The axial-speaker used

was a modified 4C10PA QUAM four-inch eight-ohm loudspeaker driven in the

10- to 15-Watts range. The "axial-speaker alone" configuration was tested as

shown in Figure 11, Part 3. In the design frequency range, the efficiency of the

loudspeaker is very low compared to the Altec Lansing compression drivers used

for the quadrature-speaker set. However, the QUAM driver was used most of the

time at very low frequencies (100 Hz to 200 Hz) around its mechanical resonance

frequency, thereby boosting its efficiency to a level equal to or higher than the

efficiency of the Altec Lansing drivers.

In another experiment, the low frequency axial-speaker was mounted at the

combustor end opposite to the quadrature-speaker set (see Figure 11, Part 5).
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The fifth test performed is shown in Figure 11, Part 6. The set up is similar

to the first axial-speaker and quadrature-speaker combination with the addition

of an anechoic termination. This type of termination is designed to absorb

sound waves incident on its surface, thereby preventing sound reflection and

axial standing waves inside the combustor pipe. The termination used consisted

of an eight-inch long cone made of a thin lightweight plastic mesh filled with

fiberglass material. Tests showed that the termination performed extremely

well at high frequencies (quadrature-speaker frequency range) and well at lower

frequencies (axial-speaker frequency range), thus allowing an homogeneous axial

sound distribution.

4.1.3. Sphere Acoustic Premix Experiment

Figure 13 is a schematic of the sphere acoustic premix experimental set up.

A seven-inch diameter, transparent plastic sphere is mounted in a support frame.

A 290-8K Altec Lansing Compression Driver Loudspeaker mounted vertically on

top of the sphere through a l_-inch hole provides the acoustic power required

for this experiment in the 500 Hz to 10 KHz frequency range. Again, the high

efficiency and high power rating (120 Watts) of the acoustic driver allow for a

high enough sound pressure level in the sphere for this experiment. A radial

microphone probe was designed to measure the three-dimensional sound field

inside the sphere. The probe can be moved across one of the sphere radial lines

(i.e., in the cross sectional plane and through the sphere center) to measure the

spatial distribution of the sound field. This gives the modal characteristics of the

sound field, thus allowing us to distinguish between radial and circumferential

modes, and to measure the sphere resonance frequencies accurately.
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4.2. Results

With each of the experimental set ups described previously, cigarette smoke

and lycopodium powder were used to investigate the mixing process.

Smoke particles which have a diameter on the order of less than one micron

have an entrainment rate very close to unity in the frequency range of interest.

The motion of smoke particles is thus representative of the acoustic velocities

and of the steady flow in the system. It can be used to visualize the acoustic

streaming (such as medium scale streaming) for different frequencies, amplitudes,

and phase angles between loudspeakers.

Lycopodium particles, on the other hand, are relatively large, having a mean

diameter of 22 microns, and a density of 1020 kg/m z. Thus at high frequencies,

the particles are not entrained by the sound wave and their motion is not

representative of the acoustic velocities. However, streaming and steady flows

still affect the particles.

4.2.1. Quadrature-Speaker Experiment

4.2.1.1. Smoke Particles

Tests were first carried out using smoke particles. When the first spinning

mode is excited (lowest non-plane wave mode: cutoff frequency of 3920 Hz) the

smoke particles are violently entrained, spinning inside the tube. Good mixing

is obtained over axial distances equal to several sound wavelengths, as opposed

to 1/4 wavelength in the case of low frequency mixing using an axial-speaker.

The particle motion is very dependent on frequency, with no motion below the

cut-off frequency. The best mixing is obtained right above the cut-off frequency
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of the first spinning mode and for frequencies as far apart as possible from the

axial resonance frequencies (the axial resonance frequencies for a plane wave in

the combustor are 220 Hz apart from each other}.

The mixing process is limited in part due to the inefficiencies and the large

losses inherent in the high frequency of operation needed to excite the first

spinning mode.

Effect of the Relative Phase Difference Between Speakers

Changes in relative phase between the two loudspeakers does not seem to

affect the mixing of smoke significantly. Intuitively, the first spinning mode

should be best excited for a relative phase difference of 90 °, whereas a 0 ° relative

phase angle Should favor the plane wave component. However, as evidenced by

the probe measurements, the effect of phasing on the sound field in the combustor

is not as important as was first expected. This is mainly due to the non-symmetry

in the two-speaker array used. A larger array of speakers regularly spaced along

the combustor cicumference would allow much better control of the modal content

of the sound field inside the pipe.

Axial Standing Waves

Some axial inhomogeneities were observed due mainly to the presence of axial

standing waves as a result of the non-anechoic end termination.

As discussed earlier in this report, the main reason for the use of high-

frequency spinning modes for mixing is the vorticity generated, which moves

the particles in a circumferential motion in the combustor cross-sectional plane
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rather than in the combustor axial plane. However, as in the case of the low-

frequency axial-speaker, axial standing waves are still present in the system above

the cut-off frequency of the first spinning mode, due to the rigid termination at

the combustor end. Previous experimental work carried out with a low-frequency

axial-speaker has shown that mixing in a plane (axial) standing wave acoustic

field occurs in cells that are 1/4 wavelength long each. Perfect mixing would

require the size of the cells to fill the combustor completely, therefore requiring a

very low frequency of operation. This low frequency of operation is in practical

using conventional acoustic drivers, and results in strong inhomogeneities in the

axial particle distribution. However, in the case of high-frequency spinning-

modes, the acoustic wavelength along the combustor centerline goes from infinity

at the cut-off frequency of the mode to its plane wave value at an infinite

frequency. Thus the use of a spinning mode at or very close to its cut-off

frequency allows axial standing waves that have nodes much farther apart than

if a plane wave mode having the same frequency were excited. This results in

larger "mixing cells" and better overall mixing. This effect can be optimized

by using a cylindrical combustor having a diameter no smaller than about 5 to

10 times the combustor length.
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Other Higher-Order Modes

The effect of other higher-order modes on the acoustic mixing was not

investigated because their cut-off frequencies are outside the frequency range

required for the effectivemixing of lycopodium particles.

4.2.1.2. Lycopodium Particles

The results obtained with lycopodium are fairly similar to the smoke tests,

except for a much stronger dependence of the particle motion on the relative

phase difference between the two loudspeakers, and the increased effect of gravity.

Again, the mixing was shown to be very dependent on frequency, and did

not fill the combustor completely due to sound inhomogeneities in the axial

direction. Due to the sharpness of the resonances, the proper setting of the

excitation frequency was critical in reaching optimum mixing. This was clearly

demonstrated by the fact that introducing a ¼ inch probe at the center of the

combustor completely stopped the mixing process, which started again when the

frequency was shifted a few Hertzs.

The difference in mixing between smoke and lycopodium is due to the varying

magnitude of the small scale streaming around each particle, which depends on

size and density, as discussed in the first section of this report.

4.2.2. Double Quadrature-Speaker Set Experiment

Some tests were carried out with a second set of quadrature-speakers mounted

at the combustor end, opposite to the first loudspeaker set (see Figure 11, Part 2).
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The purpose of this experiment was to increase the sound pressure level inside

the combustor in order to enhance the mixing process.

Very little mixing is obtained with this configuration with either smoke or

lycopodium particles. This is due to destructive interferences between the two

spinning waves generated by each quadrature-speaker set, as well as to strong

reflections from the tube_s rigid ends. Better mixing is possible by properly

phasing the four loudspeakers together to prevent destructive interferences, and

by using anechoic end terminations to remove the reflections from the rigid

terminations. However, no further work was done with this set up because the

potential mixing improvements are small and do not seem to justify the greatly

increased complexity of the system.

4.9..3. Axial-Speaker Alone Experiment

The aim of this experiment was to briefly investigate the effect of the first

few axial resonances of the combustor on the mixing process so that it could

be separated from the effect of the quadrature-speaker set in further tests (see

Figure 11, Part 3).

Smoke Particles

Very little smoke movement was observed, although the amplitude of the

acoustic vibration was much higher than with the quadrature-speaker set up.

A very slow moving pattern seemed to develop which was similar to the one

obtained by Andrade [10] in previous experiments.
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Lycopodium Particles

Tests done with lycopodium particles found large powder concentrations

at the antinodes of the standing wave as a result of the circulation from to

medium scale streaming. Tests done with lycopodium particles also found smaller

concentrations in fine striations a few millimeters apart from each other that were

moving in a direction perpendicular to the sound wave as a result of small scale

streaming. Some rotational particle motion was apparent in each 1/4-wavelength

cell, as well as a general migration of the particles toward the end opposite to

the loudspeaker.

No further work was done with this set up because this study concentrates

mainly on the effect of non-plane wave modes on the mixing process.

4.2.4. Axial-Speaker and Quadrature-Speaker Experiment

The fourth configuration tested included the low frequency axial-speaker and

the quadrature-speaker arrangements mounted at one end of the combustor tube

(see Figure 11, Part 4).

Smoke Particles

The use of both configurations together greatly enhances the mixing process,

producing tremendous smoke agitation in the pipe. This set up seems to produce

the best results of all those tested so far.

Small axial inhomogeneities still exist, preventing perfect mixing. However,

the mixing obtained might still be good enough for combustion purposes,

especially if the axial sound source is turned on only for a short period of time
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(transient mode of operation). In addition, axial inhomogeneities develop at a

much slower pace using the high frequency quadrature-speaker set up than using

the low frequency axial-speaker arrangement. Partly because the low frequency

axial-speaker setup operates at resonance and depends on standing waves, i.e.,

axial inhomogeneities, to generate high sound pressure levels.

Lycopodium Particles

With lycopodium particles, mixing is greatly increased occurred compared

to the quadrature-speaker or axial-speaker alone configurations. Again, this is

due to the mutual reinforcement of both mixing processes. Also, as in previous

experiments with lycopodium, mixing was much more sensitive to relative phase

differences between the quadrature speakers than in the case of smoke mixing.

In a fifth configuration (see Figure 11, Part 5), the axial-speaker was mounted

opposite to the quadrature-speaker set. No noticeable difference was observed

between this set up and the previous one, which had used both speaker sets

mounted at the same end.

4.2.5. Anechoic Termination

As mentioned in the previous section, the combination of axial and spinning

waves results in poor axial homogeneity in the powder distribution. This poor

homogeneity is due to the strong axial standing wave present in the combustor.

Although this standing wave seems to be the major factor responsible for the

mixing at low frequencies, its presence prevents "perfect mixing".

The standing wave is generated by the interaction between incident sound

waves from the loudspeakers and sound waves reflected from the rigid termination
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at the end of the combustor. Thus the rigid plate terminating the combustor

was replaced by an anechoic (no echo} termination. This type of termination

is designed to absorb sound waves incident on its surface, thus preventing the

formation of standing waves.

The experiments run were disappointing although not surprising. When the

loudspeakers were turned on, the lycopodium powder was very quickly blown

towards the anechoic termination by the axial component of the traveling sound

wave. Although the sound pressure level was constant in the axial direction,

the sound propagated away from the loudspeakers, entraining the particles as a

result of radiation pressure and streaming in the bulk of the fluid.

To ensure that the particle motion was not caused by air leaks in the system,

the experiment was repeated using a carefully sealed combustor and loudspeaker

arrangement without microphone ports. When the sound source was turned on

and streaming appeared, the particles were blown towards the rigid termination

as in previous experiments.

This experiment clearly illustrates one of the fundamental problems inherent

in steady state acoustic mixing: unless the sound field has no axial component,

such as at the cut-off frequency of the first spinning mode, standing waves

are necessary to prevent particles from being blown away from the sound

source. However, by definition, the presence of standing waves means axial

inhomogeneities, which prevent perfect mixing.

4.2.6. Sphere Acoustic Premix Experiment

One of the main motivations for the sphere experiment was to investigate

the influence of several acoustic modes on the mixing process, especially radial
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modes. A seven-inch diameter sphere was used for this test, as opposed to the

two-inch diameter cylindrical combustor. The large diameter of the sphere allows

at least seven modes (starting at 1260 Hz) to be excited using available acoustic

drivers, as opposed to only one mode in the case of the cylindrical combustor.

The first few acoustic modes inside the sphere are shown in Figure 14 along with

the radial pressure distributions.

Little smoke particle motion is observed in the sphere at most frequencies

and sound pressure levels. With lycopodium, no motion is recorded for purely

radial modes (n = 0). Large powder motions are present when circumferential

modes are excited (n > 0). However, due to the standing wave nature of the

sound field, particle motion seems to occur in cells whose shape is dictated by

the circumferential order of the mode excited (n) and by the source boundary

condition. This is clearly illustrated by the fact that no motion occurs opposite

the loudspeaker at certain frequencies, while violent motion occurs at the same

frequencies and at a 90 ° angle from the loudspeaker (with the sphere lying on

its side and the speaker axis horizontal). The opposite effect occurs at other

frequencies, with violent motion opposite the loudspeaker, and no motion at a

90 ° angle from the loudspeaker.

To eliminate the "mixing cell effect" and obtain better mixing, a traveling

spinning wave should be excited in the sphere. Although this might be achieved

by using a properly phased loudspeaker array, it would greatly increase the

complexity of the system.

Instad of a traveling wave a standing wave field similar to the field in the

sphere could be obtained in the cylindrical combustor if the loudspeaker sources
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were replaced by line sources running along the pipe wall parallel to the pipe

axis. However, the effect on the mixing would be detrimental due to the "mixing

cell effect" discussed above.

The main anticipated result for this experiment was that the dominant

streaming mechanism in the acoustic mixing process arises from the interaction

between the sound field and the boundary-layer at the combustor wall. Indeed,

very little mixing was obtained when purely radial modes were excited. This

corresponds' to the case when the acoustic velocity is perpendicular to the wall

and the interactions between the sound-field and the wall boundary-layer are

very small. Inversely, large particle motions were recorded for circumferential

modes when the interactions between the acoustic field and the sphere wall are

large.

4.3. Conclusions

There does not seem to be a practical way to obtain perfect mixing under

steady state conditions using sound waves. Particle concentrations due to axial

inhomogeneities are unavoidable unless a pure spinning mode having an infinite

phase velocity (i.e., no axial component) is excited at the cut-off frequency of

the combustor, which is impossible to realize practically. However, the mixing

obtained using a combination of low-frequency axial waves and high-frequency

spinning waves, with a rigid termination might be sufficient for our purposes.

The mixing process could also be improved by running the loudspeakers under

transient conditions. This would prevent a strong build-up of the standing waves

which are responsible for the inhomogeneities in the sound field.

79



5. Low-Frequency Acoustic Theory for PCCE Combustors

5.1. Introduction

This section describes the tools needed to study and predict the acoustic field

in PCCE combustors at low frequencies. This knowledge is required to predict

the resonance frequencies at which the system must operate, and to minimize

the detrimental effect on the mixing process of such elements as instrument

ports or diaphragms. The analysis is one-dimensional and assumes that only

plane waves propagate in the system. The PCCE combustor studied consists of

a cylindrical waveguide having a length several times its diameter. Although the

theory presented here is for a tube (i.e., cylindrical cross-section), it is directly

applicable to ducts of any cross-section as long as the low-frequency condition is

satisfied.

5.2. Low-Frequency Condition

presented in this section.

wavelength _ :

This section defines the term "low-frequency" as it applies to the analysis

First, let's look at the definition of the sound

= cT = e_ (2.1)
f

where c is the speed of sound, T is the period, and f is the frequency of the

sound wave. It is clear from Equation 2.1 that the higher the frequency, the

shorter the sound wavelength.
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When sound produced by a loudspeakerpropagates in a waveguide, suchas

in a tube, several types of acoustic wavescan exist, depending on the sizeof the

sound wavelength.

• For short wavelengths (i.e., high frequency) compared to the typical cross-
sectional dimension, the sound can "bounce" back and forth against the

tube walls as it propagates along its axis. In this high-frequency mode of

propagation, the sound pressure level in the tube cross-section is non-uniform

(higher-order modes).

• For long wavelengths (i.e., low-frequency) compared to the typical cross-

sectional dimension, the sound can only move along the tube axis, and the

sound pressure level in the tube cross-section is uniform. The wave fronts

are planar and the sound field is one-dimensional (zero-order mode or plane

wave propagation).

The transition between the low-frequency and the high-frequency modes of

propagation occurs at the cut-off frequency of the first non-planar mode for

the particular waveguide used. This is the lowest frequency for which the first

higher-order mode can exist.

For a rectangular waveguide (duct), the first mode occurs when the half-

wavelength is equal to the shortest width a of the duct. Thus, the cutoff

frequency of first mode fcree is given by:

fCrec = --c (2.2)
2a

Similarly, for a cylindrical waveguide such as the one used in the PCCE

experiments, the first mode starts propagating when the half-wavelength is

approximately equal to the duct diameter. The exact value is given by the root

of the derivative of the Bessel function [45] and corresponds to the frequency

fCcyl given by:
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C

fccy = 0.584 (2.3)

where D is the tube diameter.

Theoretically, depending on the source type and the frequency spectrum of

the excitation signal, non-plane waves, plane waves, or a combination of both

can be generated in a waveguide. In practical cases, due to non-homogeneous

source boundary conditions, acoustic attenuation, and the boundary-layer at the

tube walls, a combination of both waves is always present. However, by using

an excitation signal having frequencies much lower than the tube first cut-off

frequency, it is possible to minimize the non-planar component in the sound

field.

5.3. Wave Equation

at

equation in one dimension:

The acoustic field in a combustor of arbitrary cross-section can be described

low frequency and moderate amplitude by the first order inviscid wave

dZp 1 dZp

dx----_ = e-_ dr---T (3.1)

where p is the acoustic pressure, x is the axial distance along the combustor

axis, and t is the time.

This equation is the basis of all the tools presented in this section and its

solutions are presented for a variety of cases relevant to the acoustics of PCCE

combustors.
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The relationship between the acoustic velocity v and the acoustic pressure

p is also needed to solve the wave equation. In one dimension, it is given by the

momentum equation:

dv dp (3.2)
P°T- dz

where P0 is the static density of the medium.

Assuming a harmonic pressure variation, Equation 3.2 can be rewritten in a

more direct form as:

v-- 1 dp (3.3)
jwpo dx

where w is the radial frequency (w = 2_rf).

5.4. Axial-Speaker in a Closed Tube

This simple configuration is representative of the case when an axial-speaker

is mounted at one end of a tube of length L, with the other end closed by a rigid

termination such as shown in the figure below.
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The sound field inside the tube can be characterized as a steady state or a

transient sound field depending on the time history of the source (i.e., whether

or not it is stable). Both types of sound field have been used in acoustic mixing
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experiments, resulting in very different mixing characteristics. When using a

steady state sound field, mixing is obtained in streaming cells; while when using

a transient sound field, such as a short duration loudspeaker signal, mixing is

due to thin particle striations forming and coming together inside the tube.

5.4.1. Steady State Sound Field

A steady state is reached when the variables characterizing the sound field

have constant averaged values. In other words, a steady state is reached when

the source signal is constant, and the sound field is stable.

5.4.1.1. Steady State Sound Field Equations

The boundary conditions on the acoustic velocity are velocity of zero at the

rigid end of the combustor, and the loudspeaker diaphragm velocity at the other

end:

v(x = O,t) = vl e i_t ; v(x = L,t) = 0 (4.1)

Solving the wave equation for these conditions yields:

sin [k(L - x)] eye, (4.2)
_(X,t) _ _1 sin (kL)

where k is the wave number (k = _). Using the relationship between pressure

and velocity given in Equation 3.3, we get:

p(x,t) = -ivlpoe cos [k(L - x)] e_._t (4.3)
sin (kL)

The acoustic impedance is defined as
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Z(x,t)- p(x,t)
V(x,t) (4.4)

V(x,t) is the acoustic volume velocity defined as V(x,t) = v(x,t) S, where S

is the tube cross-section.

Using Equations 4.2 and 4.3, the acoustic impedance can be rewritten as:

.poc= -2--if-cot [k(L- x)] (4.5)

5.4.1.2. Steady State Sound Field Characteristics

The sound field inside the tube is a standing wave, as shown in the next

figure (including some attenuation).

v T_'qql v

2 4

At the rigid end of the tube, the acoustic velocity is zero (velocity node)

and the acoustic pressure is at the maximum (pressure antinode). Note that the

velocity and the pressure are out of phase; each pressure minimum corresponds

to a velocity maximum and vice versa; and the standing wave pattern repeats

,k

itself every _. The decrease in amplitude of the maximum pressure and velocity

is due to the attenuation of the sound wave in the tube.
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5.4.1.2.1. Streaming patterns

Streaming patterns in the tube as a result of such a standing wave sound

field are shown below (from Ref. [31]).

5.4.1.2.2. Resonances

Resonances occur at frequencies f,.(n) for which the acoustic pressure and

the acoustic velocity reach a maximum in the tube at their respective antinodes

( Z(x = O,t) = o_ ):

C

h(-) = n 2-Z ; n > 0 (4.6)

f,.(n) corresponds to frequencies for which the length of the tube L is equal

A

to an integer number of half-wavelengths 2" Also note that in a practical

situation, viscosity limits the amplitude of the acoustic pressure and velocity

at resonance.

5.4.1.2.3. Antiresonances

Antiresonances occur when the acoustic pressure and velocity are at a

minimum at the antinodes. Therefore,
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ACn) : (2n + 1) c (4.7)
4£,

Experience has shown that to get any significant mixing in a zero-gravity

environment using low-frequency axial-speakers, the combustor system must be

excited at one of its resonance frequencies.

5.4.1.2.4. Acoustic Pressure at Resonance

At resonance, the acoustic pressure given by Equation 4.3 goes to infinity. In

reality, viscous dissipation and the compliance of the tube wall limit the build

up of energy inside the tube. An upper limit for the pressure can be obtained

by replacing the wave number k by a complex number kc :

= k + (4.s)

where c_ is an attenuation coefficient.

It' can be shown both experimentally and theoretically that replacing k in

the expression for the acoustic velocity and pressure (Equations 4.2 and 4.3) by

kc satisfies the wave equation, including attenuation due to molecular, viscous,

and thermal effects in the bulk of the fluid and in the tube wall boundary-layer.

Using Equation 4.8 and assuming that the attenuation is small (a << k), the

denominator in Equation 4.3 can be rewritten as:

sin(kcL) = sin[(k + ja)L]

_, sin (kL) + j aL cos (kL)

= _//sin 2 (kL) + [aL cos (kL)] 2 _jO (4.9)
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where

¢ = tan -1 [aLcot(kL)] (4.10)

Therefore, the steady state acoustic pressure can be approximated by:

p(x,t) _ -jvlpoc cos [k(L- x)] eYC,_t_¢)

V/sin 2 (kL) + [aL cos (kL)] 2

At resonance, the acoustic pressure amplitude in the tube is:

(4.11)

T]I

lp_.(x,t)l = poc -_ cos [k(L - x)] (4.12)

5.4.1.2.5. Attenuation Coefficient

The main acoustic attenuation mechanisms in a tube are the regular and

the boundary-layer absorptions. Regular absorption consists of the attenuation

due to viscous and heat-conduction effects in the bulk of the fluid, as well

as the attenuation due to the rotational and vibrational molecular relaxation.

Boundary-layer absorption due to viscous and heat-conduction effects is the

main attenuation mechanism in the tube at the frequencies of interest. It is

best described by the Helmholtz-Kirchhoff wide-tube attenuation coefficient:

?-1
aw = c'--D 1 + (4.13)

where v is the kinematic viscosity, _/ is the ratio of specific heats, and Pr is the

Prandtl number. For a 2-inch diameter tube, aw = 0.037 Np/m at f = 1000 Hz,

and aw = 0.016 Np/m at f = 200 Hz.
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5.4.1.3. Steady State Energy Balance Equations

This section defines acoustic energy and acoustic intensity, both of which are

widely used in the characterization of sound fields. Expressions are given for the

case of a traveling plane wave and a standing wave in a tube.

5.4.1.3.1. General Relationships

The energy balance for a volume V of area A can be written as:

lc 2 )cg--t pov'v+-_ poPZ dV =- pv.ndA (4.14)

where p is the acoustic density.

The left hand side of Equation 4.13 represents the rate of energy variation

in V. Therefore, the energy density e inside V is given by:

E = _k -1- Ep

1 p2

= _pov'v+ 2Poe 2
(4.15)

The first term on the right hand side represents the kinetic energy density ek

and the second term the potential energy density ep of the fluid in the volume.

The total energy inside V is:

f

Ea =/v e. dV (4.16)

The right hand side of Equation 4.14 represents the rate at which the energy

leaves V through A. We can define the acoustic intensity vector [ as the time

average of the energy flux p v :

I=< pv* > (4.17)
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The acoustic power crossing the surface A is given by:

W = /AIdA (4.18)

5.4.1.3.2. Traveling Plane Wave

In a traveling plane wave, the acoustic pressure and velocity are in phase and

related by:

P--=+Poc (4.19)

Therefore, the energy density is equal to:

p2

(4.20)
-- poe2

The energy flux vector and the acoustic intensity are given by:

p v = (4.21)

2

_ P._rms (4.22)
poC

where Prms is the RMS acoustic pressure.

For a plane wave, acoustic intensity and energy density are real and directly

related to the squared RMS pressure.

5.4.1.3.3. Standing Wave in a Closed Tube

For a standing wave in a closed tube, the energy density _ can be calculated

using the results from Section 5.4.1.1:
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E _--- Ek ÷ Ep

pov_ Isin[k(L-x)]12(1 ej_.n) pov[ [cos[k(L-- x)] 1- 4 k  (kL) J + ÷ --_ [ sin (kL) J

pov_
(1 - cos [2k(L - x)]e i2_')

- 4sin 2 (kL)

The energy flux vector and the acoustic intensity are given by:

v_pocsin[2k(L- x)l

pv= 4 __) sin(2wt)

2

(4.23)

(4.24)

7=0 (4.25)

The total acoustic energy inside the tube can be calculated using Equa-

tion 4.16:

sin (2kL) y2wt'lE_ =< E_ > 1 2-_ e ] (4.26)

where the time averaged acoustic energy < Ea > is equal to:

< Ea >= pov_.___S" L (4.27)
4 sin 2 (kL)

Finally, the rate at which the loudspeaker does work on the fluid is given by:

w_ = p(o,t}v(O,t)s

= -jv_poc cot(kL) cos(2wt) (4.28)

Therefore, when only standing waves are present in the tube, there is no

average net flow of energy inside the tube (I = 0). The averaged rate at which

the loudspeaker does work on the fluid < Wp > is also equa| to zero, which is
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typical of the steady state condition. Finally,as expected from Section 5.4.1.1,

the averaged energy insidethe tube isinfiniteat resonance.

5.4.2. Transient Sound Field

A transient occurs when the variables characterizing the sound field do not

have constant averaged values. In other words, transients are present when the

source is unstable, such as when it is switched on or off.

Good mixing has been obtained in a micro-gravity environment using an

axial-speaker operated in a transient mode. In this experiment, the source is

turned on for a brief period of time. As the loudspeaker is first turned on, thin

striations formed of groups of particles arranged perpendicular to the tube axis

rise vertically in a "finger"-like fashion. As time goes on, the "fingers" join and

mix with each other, completing the mixing process. The loudspeaker is turned

off before streaming cells fully develop to prevent the steady state mixing process

studied in the previous section from developing.

5.4.2.1. Transient Sound Field Equations

The transient response of the tube is studied here for a loudspeaker generating

a sinusoida] signal starting at t = 0.

In a practical case, the assumption of a sinusoidal signal is valid because

of when the transient has a long duration. For short transients, the sinusoidal

assumption might not be valid because the ringing effect caused by the inertia

and stiffness of the loudspeaker voice-coil and membrane assembly. In any
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case, the sinusoidal assumption gives a good insight into the transient response

characteristics, and the energy build up in the tube.

The transient response of a closed tube can be obtained by taking the

Laplace transform of the wave equation using the following boundary and initial

conditions:

v(_ = o,t} =,,, cos(_t) ;

pCx,t = o) = o ;

v(x = L,t) = 0

v(_,t = O)= 0 (4._9)

The acoustic pressure solution of the wave equation is:

p(x, t) = jpoevl _ sin t 2mL ....+ x H t 2mL + x
C C

rn_-O

+sin[w(t-2(m+:)L-x)] H[t-2(m+: )L-x] (4.30)

where H(t) is the Heaviside function defined by:

0 t<O

H(t) = 1/2 t=O

1 t>O

The solution for the acoustic pressure given in Equation 4.30 consists of

a sum of reflections from the wall and the loudspeaker diaphragm, with each

reflection starting to contribute to the total pressure after a time delay equal to

its propagation time.
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5.4.2.2. Transient Sound Field Characteristics

5.4.2.2.1. Pressure and Velocity Build up at Resonance

At resonance, w -- 2_r fr(n) where fr(n) is given by Equation 4.6.

Therefore, pres(x,t) can be written as:

Pres(X,t) :jpoCt_l _ sin [w (t_ _)] H t 2mn-_:r,c

m=0

+sin[w(t +X)] H[ t-2(m÷ l)L-x]c (4.31)

As expected, the reflections are in phase and reinforce each other, resulting

in the acoustic pressure building to infinity. The normalized acoustic pressure is

shown in the figure below for an excitation frequency such that the tube length

is equal to one wavelength (i.e., n = 2 in Equation 4.6).
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However, the formulation for the acoustic pressure given by Equation 4.31 is

not very practical and is simplified below.
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From the previous Figure and Equation 4.31, the acoustic pressureamplitude

at resonancecan be approximated by:

Ipres(X,t)l : pocvx 2 tfr(n)
n

Vl

= poe 2 --_ t (4.32)

The harmonic time dependence of the acoustic pressure is readily evaluated

from the momentum equation and the velocity boundary condition at the source

(Equations 3.2 and 4.29). The axial dependence is obtained by analogy with

the steady state case. Combining these and Equation 4.32, we get the simplified

expression for the acoustic pressure at resonance:

I)1

Pres(X,t) = pocZ--_t cos [k(L- x)] sin (wt) (4.33)

The approximate expression for the acoustic velocity is obtained using

Equations 4.33 and 3.2:

171

Vres(x,t) = C -_ t sin [k(L - x)] cos (wt) (4.34)

5.4.2.2.2. Transient Duration

The time t_ needed for the sound field to reach a steady state from the

moment the loudspeaker is turned on can be evaluated simply by equating

the acoustic pressure amplitude at resonance in the case of a transient (Equa-

tion 4.33) with the steady state acoustic pressure amplitude (Equation 4.12), and

solving for the time variable:

1 (4.35)
otc
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When the acoustic attenuation is high, the transient has a short duration as

the high dissipation rate rapidly catches up with the energy growth rate. For

low attenuation, the transient is long because the acoustic pressure builds up in

the pipe for a longer period of time.

For a 2-inch tube having a perfectly rigid end, te = 0.08 sec at f -- 1000 Hz,

and ts -- 0.18 sec at f = 200 Hz. In reality, the value for t_ will be somewhat

different. This is due to the higher "perceived" sound attenuation as a result of

the non-perfectly rigid end (i.e., shorter ts ), and the non-sinusoidal input signal

which results from of the loudspeaker ringing (i.e., longer ta ).

5.4.2.3. Transient Energy Balance Equations

Energy formulations can also be used to evaluate the transient duration ta,

or the acoustic pressure amplitude at resonance. The transient duration is readily

obtained by equating the total energy growth rate inside the tube with the energy

dissipation rate.

5.4.2.3.1. Energy Growth at Resonance

Using Equations 4.15, 4.33, and 4.34, the energy density at resonance eres is

given by:

_re$ -- P°c2 [sin' (klL - x]) cos2 (_t) + cos' (k[L - =1)sin' (_t)]
2

(4.36)

The total energy in the tube at resonance is obtained from Equation 4.16:

(4.37)
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where V is the tube volume (V -_ LS).

5.4.2.3.2. Energy Dissipation at Resonance

It can be easily shown by solving the wave equation, including attenuation

in the case of a standing wave, that the decay of the pressure and the velocity

amplitudes with time is exponential. Thus the energy decay due to dissipation

is of the form:

Ed(t) = E(t = O) e -2_'ct (4.38)

5.4.2.3.3. Transient Duration

Steady state is reached when the energy dissipation rate

dEa(t)
the total energy growth rate inside the tube d-----_ :

dE_(t)=_ dEd(t)
dt dt

V
2 -_ tV--2ac 4

Solving for the transient duration ts, we get:

1

_C

which is the value previously obtained (see Equation 4.35).

dEd(t)

dt
is equal to

(4.39)

5.5. Axial-Speaker in an Open Tube

The study of the open tube configuration helps us understand the acoustics

of combustors because it represents one of two extreme cases encountered in

97



resonating tubes (the other extreme casebeing the closed tube configuration).

The open end of the tube can be modeled as a pressure release boundary

condition, i.e., the acoustic pressure at the tube end is zero, instead of the

acoustic velocity being zero (as in the case of a closed tube). The following

figure describes the open tube configuration.

v1 v

x-O X x=l_

5.5.1. Sound Field Equations

The boundary conditions are an acoustic pressure of zero at the open end of

the combustor, and the loudspeaker diaphragm velocity at the other end:

v(x = o,t) = Vl d _t ; p(x = L,t) = o (5.1)

Solving the wave equation for these conditions yields:

cos [k(L- x)] _,t (5.2)v(:,:,t) = Vl
cos (kL)

p(x,t) = -jvlpoC sin [k(L - x)] _t (5.3)
cos (kL)

z(x,t) .po_.= -3--_- san [k(L - x)] (5.4)
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5.5.2. Sound Field Characteristics

As shown in the figure below, the position of the nodes and antinodes is

shifted by _ compared to the closed tube case.

2 4

The streaming patterns are also reversed as shown below:

--/ .................. -'r-i .........

The resonance frequencies are given by:

C

fr(-) = (2_ + 1)

Therefore, the first resonance occurs at

resonance of the closed tube.

> 0 (5.5)

half the frequency of the first

5.6. Axial-Speaker in a Tube having a Termination of Impedance ZI

The acoustical characteristics of a tube termination can be expressed by its

acoustic impedance. From the definition of the impedance given in Equation 4.4,
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we can calculatethe termination impedance Zl at resonance for a closed and an

open tube as:

ZI -- -j x co for a closed tube (6.1)

ZI = -j × 0 for an open tube (6.2)

In both cases, a pure standing wave is set up in the tube and the acoustic

impedance is imaginary (see Equations 4.5 and 5.4). Any other termination

impedance will have a value somewhere between co and 0, resulting in the tube

having resonance frequencies between the resonance frequencies obtained for the

closed and open ended cases, as well as some attenuation at the boundary.

5.6.1. Sound Field Equations

The case of an axial-speaker in a tube having a termination Impedance Zl

is shown below:

p! ---

Y

-" Pr

Z

:>

x= 0 x x=L

The acoustic field inside the tube can be described as follows:

v(x,t) = vx [cos (kx)- [ j(p°c/S)tan(kL) + Zt]LY, -)GoT/ j sin(kx)]e (6.3)
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p(x, t) - -jvlpoc sin (kx) - [Zt tan (kL) - j(poc/ S) J cos (kx)

z(:=0,0 ,,o:
-- -7- l.(po:/S)+ dz,tan(--i-£))J

(6.4)

(6.5)

5.6.2.Measurement of the Termination Impedance Zl

The complex termination impedance Zl required to characterize the sound

field inside the tube is usually determined experimentally. Zz can be rewritten

as:

z, = _,_s+ (6.6)

where /7 and ¢ are the modulus and the phase of the impedance.

Solving for fi and ¢ we get:

where

1_ = po__jcql + (PilPr) 4 - 2(PilPr) 2 + 4(PilPr)isin 2 0
S

¢ = tan -1

i + (PUP,)_- 2(PdP,)cosO

2(P,/P,) _o ]
(P, IP,,)i- l J

(6.7)

(6.8)

0 = 2ka - _r (6.9)

and

P,. SWR + 1

P, SWR- 1
(6.10)
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a is the distance between the termination and the first pressure minimum in the

standing wave as shown in the next figure. SWR is the Standing Wave Ratio,

P_ is the amplitude of the wave incident on the termination, and Pr is the

amplitude of the wave reflected by the termination. SWR is equal to the ratio of

the maximum to the minimum measured acoustic pressure in the tube, as shown

in the figure below.

7

PI-Pr-_+P r ......... _ _,.. /_ _/.._ --

5.7. Acoustic Elements

This section describes the acoustical properties of various simple acoustic

elements which are found in PCCE tubes. The equations describing these

elements can be combined together to build a complete acoustic model of the

PCCE tube, or used as simple guidelines during the design of an acoustic mixing

system for a PCCE combustor.

5.7.1. Variable Area Sections

Short variable area sections are used in the PCCE set up, such as to connect

the large diameter loudspeaker diaphragms (9.5 cm) to the small diameter PCCE

tube (5 cm), or between the ignition (6 cm diameter) and the combustor (5 cm

102



diameter) sections of the PCCE tube. Although these area variations are gradual,

the acoustic losses generated can be estimated by treating the gradual variations

as sudden transitions. This is justified because the wavelength at the frequencies

of interest is much longer than the length of the area variations for a substantial

change in area. In other Words, the sound wave is too large to see the change of

area as gradual, and perceives it as a sudden change in Cross-section.

The transmission coefficient at for a sound wave going through a sudden

transition is defined as the ratio of the power in the transmitted wave to the

power in the incident wave:

2

4SOSI

(So+ S,)*

(7.1)

(7.2)

where Pt and Pi are the RMS amplitudes of the transmitted and incident

acoustic pressures, and So and S 1 are the areas on each side of the transition,

as shown in the figure below.

-t Pi Pt
Pr

The acoustic loss due to the area change between the axial-speaker and the

PCCE tube is at -- -1.61 dB. The loss due to the area change between the

ignition and the combustor sections of the PCCE tube is at = -0.14 dB.
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5.7.2. Side Branch Sections

Side branches are frequently used in PCCE configurations to inject fuel into

the combustor or as instrument ports. This section first presents the general

relationships for a side branch having arbitrary acoustic impedances and then

looks more closely at two simple cases which illustrate the effect of a side branch

on an acoustic system such as a PCCE tube.

5.7.2.1. General Relationships

The figure below represents a side branch

Pi _
7,

Pr

X= 0 X X= X,

Zt is the complex acoustic impedance of the main tube at the point where

the branch is connected to the main tube (x = x_). Zt is defined as:

z, = P'(_ = x',t)
St vt(x = x', t)

= R_ +jXt (7.3)

where St is the area of the main tube for x > x _.

Zb is the complex acoustic impedance of the branch and is defined as:

104



zb = Pb(:_= x',t)
Sb Vb(Z = z',t)

= Rb q-3Xb (7.4)

where Sb is the area of the branch.

The reflection coefficient ar is defined as the ratio of the power in the

reflected wave to the power in the incident wave:

(7.5)

where Za = po_____cand S is the area of the main tube for z < x'
S '

The transmission coefficient is given by:

O_t

41Ztl21Zbl2

IZ,121Zbl2+ Z=2 [(R,+ Rb)_+ (St + Xb)2]+ 2Z, [R, tgd2 + RblZtl2(!.6)

The impedance of the whole acoustic system at x = 0 is given by:

z(. = o)=
Z_aR [1 + tan 2 (k:rt)]

[Za - X tan (kz')] 2 + [Rtan (kz')] 2

+ jzo IX + zo tan(kx')] [zo - Xtan (_')1 - [Rtan (k_')]_(7.7)
[Za- X tan(kx')]2+ [Rtan(k:r')]2

where R and X are the real and imaginary parts of the combined impedance

Zc of the side branch and the main tube.

zo = R + ix (7.8)
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and

RtlZbl2 + RblZ'12 • X =
R= (Rt + Rb) 2 + (Xt + Xb) 2 '

x, lzbl2 + xblz, I_

(Rt + Rb) 2 + (Xt + Xb) 2
(7.9)

5.7.2.2. Side Branch in an Infinite Tube

In the case of an infinite tube, the acoustic wave traveling down the tube

is never reflected back and the sound field inside the tube is purely real (see

Section 5.4.1.3.2).

Pi --I_"

Pr Pt --I_

The impedance Zt is given by:

Zt ----p0___cc (7.10)
St

= S ), the reflection andIf the main tube diameter stays constant (St

transmission coefficients can be calculated using Equations 7.5, 7.6, and 7.10:

ar = (P°c/2S)2 (7.11)

[Rb + (poc/2S)] 2 + X_

at = R_+ X 2 (7.12)
[Rbd-(poc/2S)]2+ X_
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5.7.2.2.1. Infinite Y-Section

An infinite Y-section can be looked at as an infinite side branch in an infinite

tube.

Pi

Pr

The reflection and transmission coefficients are given by:

= (sb/s)2 (7.13)
[2+ (sJs)] 2

4

a' = [2 + (Sb/S)] _ (7.14)

For a 2-inch diameter main tube and a 1/4-inch diameter instrument port,

ar = -42 dB and st = -0.07 dB. Nearly all of the energy in the acoustic wave is

transmitted past the 1/4-inch branch. Thus instrument ports or small openings

have very little effect on the acoustics of the main tube if no reflections are

present.

For a 2-inch diameter main tube and a 2-inch diameter injection port,

1 4

ar = _ = -9.5 dB and at = _ = -3.5 dB. In this case, nearly half of the energy

in the sound wave is lost to the side branch while about 1/10 is reflected back to

the loudspeaker.
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5.7.2.2.2.Closed Side Branch in an Infinite Tube

In practical cases, the assumption that the side branch is infinite is difficult to

justify. Reflections can be minimized by placing an anechoic termination in the

side branch, or by replacing it with a long, small diameter tube that attenuates

most of the acoustic wave. In most cases, a closed pipe is more representative of

the true behavior of the type of side branch found in PCCE tubes.

A closed side branch in an infinite tube is shown in the figure below next to

an infinite side branch in a closed tube.

Pi _ p, _ Pi _ --II_
Pr -- _ Pr

It is clear from the symmetry in the equations in Section 5.7.2.1 that the

main tube and the side branch act in the same way on the sound wave. Thus

both representations in the figure above can be studied using the same set of

equations.

Let's consider the case of the closed side branch. The acoustic impedance for

the side branch is given by Equation 4.5:

.poc
Zb = --J-_-bcot (kL) (7.15)

Replacing Zb in Equations 7.11 and 7.12 by itsvalue above, we get:
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1
_r = 2 (7.16)

1 + (2S/Sb)2cot(kL)

1
at -- (7.17)

1 + (Sb/2S)2tan(kL) 2

When tan(kL) = 0 ( cot (kL) = c_ ), ar = 0 and at = 1. From

Section 5.4.1.2.2, we know that this corresponds to the resonances of the closed

side branch. In this case, whatever the diameter of the side branch is, its

impedance at the junction with the main tube is infinity. In other words, the

side branch imposes a zero velocity boundary condition and acts as a rigid wall.

All of the acoustic energy is transmitted to the main tube and the side branch

is invisible to the sound wave.

When tan (kL) = c_ (cot (kL) = 0), ar = 1 and at --- 0. This corresponds

to the antiresonance of the side branch. No energy is transmitted through the

main pipe, and the sound wave is reflected back to the loudspeaker in its entirety.

This configuration can be used as a "tuned" acoustic absorber (or filter) to

remove unwanted frequency components from piping systems. In the case of

PCCE tubes, such a set up is detrimental because it prevents the sound from

filling the whole tube.

In conclusion, care must be taken when introducing closed side branches into

the PCCE tube. Tuning the side branch can minimize its effect, although this

not always possible at low frequencies because of the long length required. For

instance, at 250 Hz, the minimum length required for the side branch to be tuned

is equal to - = 27 inches, which is too long for practical purposes. However,
2

109



it is critical to stay away from the side branch antiresonances, the first of which

A

occurs for a branch length of _ = 13.5 inches.

5.7.2.2.3. Open-Ended Side Branch in an Infinite Tube

The case of an open-ended side branch can be studied in the same way.

Pi
D

-,ql -- Pr '-t

From the previous results and Section 5.5, it is obvious that the effect of

the open-ended side branch will be null when its length is equal to (2n + 1)4'

which corresponds to a minimum length of 13.5 inches at 250 Hz. The losses

due to the side branch will be very strong when its length is a multiple of the

half-wavelength. This result is the opposite of the closed side branch case and

emphasizes the importance of knowing the acoustic termination impedance of

the branch. In the case of a termination of impedance Zz, a precise tuning of

the branch can also be obtained by varying its minimum length between - and
4

- until resonance occurs.
2

5.7.3. Diaphragms

Diaphragms are used to separate various sections in PCCE tubes, such as the

ignitor from the combustion chamber. This section looks at how the presence of
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diaphragms affects the sound field inside a PCCE tube.

The diaphragms used are made of 0.5/1000-inch thick silvered Mylar. They

are mounted on support rings with several grades of tightness. The tightness is

evaluated by measuring the diaphragm deflection due to the weight of a 1/2-inch

diameter steel ball placed at its center. The various degrees of tightness are

roughly categorized into three classes as follows:

Tight:

Medium:

Loose:

50/1000-inch deflection =k 10/1000-inch

100/1000-inch deflection + 20/1000-inch

150/1000-inch deflection -4- 30/1000-inch

Diaphragms have widely varying effects on the sound field inside a tube

depending on their mechanical properties. For instance, the stretching properties

might be most important in the response of a rubber diaphragm, while the

bending stiffness might dominate the response of a stiff plate-like diaphragm. In

these two cases, the acoustic transmission characteristics are different, resulting

in different, sound fields inside the tube.

The PCCE diaphragms are assumed to be loose and non-stretchable. By

"loose" we mean that a diaphragm "flaps" back and forth with the acoustic wave.

By "non-stretchable" because it is loosely mounted we mean that, at very high

sound pressure level when the acoustic air displacement exceeds the diaphragm

displacement, the diaphragm bottoms-out, thus clipping the acoustic pressure

waveform transmitted through it. In reality, the diaphragm does stretch a little,

allowing an extra displacement of the air molecules. However, this stretching

is limited and contributes little to the overall sound pressure level transmitted

through the diaphragm. Moreover, as shown in Section 5.7.3.2.2, diaphragm
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motion is minimized and bottoming-out does not occur in a properly designed

system.

5.7.3.1. Non-Stretchable Loose Diaphragm Having Zero Mass and Zero

Stiffness

The study of a non-stretchable loose diaphragm having zero mass and zero

stiffness helps define the relationship between the diaphragm measured deflection

and the maximum acoustic pressure that can be "passed" through the diaphragm

before it bottoms-out.

The assumption of zero-mass and zero-stiffness means that the diaphragm is

completely entrained by the sound wave in the tube and does not disturb the

sound field until it bottoms-out.

5.7.3.1.1. Deflection of a Loose Diaphragm Due to an Acoustic Pressure

Load

The acoustic pressure load on a PCCE diaphragm due to a plane wave can

be assumed to be constant over the whole diaphragm area. This is justified by

looking at the properties of the acoustic boundary-layer in the tube.

Viscous and Thermal Boundary-Layer Thicknesses in a pCCE Tube

For a plane wave in a tube, the acoustic thermal and viscous boundary-layer

thicknesses 5v and _ are given by:

; _,_ = _/_ (7.18)

where _ is the thermal conductivity of the air in the tube.
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The ratio of thermal and viscous boundary-layer thicknesses is given by

= ff r (7.19)

For air at ambient temperature, Pr = 0.73. Thus, _ and 6_ are

approximately equal.

The higher the frequency, the smaller the thermal and viscous boundary-

layer thicknesses. For a low frequency of 100 Hz, 6_ = 0.02 cm which is over

a hundred times smaller than the PCCE tube radius (2.5 cm). Thus it is safe

to assume that the wave is truly planar and that the acoustic pressure load is

constant over the whole diaphragm area.

Deflection of a Loose Diaphragm Due to a Pressure Load

The displacement z(r) of a circular diaphragm due to a pressure load is

shown in the following figure on the right.

_ml [ [

/

It can easily be shown that z(r) must satisfy the following equation:

(7.20)
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where Vr2 is the Laplacian operator in cylindrical coordinates, r is the radial

coordinate, f is the acoustic pressure, and T is the tension of the diaphragm.

For a diaphragm of radius R fixed at its edges and having a maximum

deflection _ at its center, the boundary conditions are given by:

Oz(r = 0) _ 0 and z(r = R) = _ (7.21)z(_ = o) - Or

Thus the solution for the diaphragm displacement is:

r 2 (7.22)zCr)=

The diaphragm diameter 2l is easily calculated:

2l:2_ 1+ + +In 1+ 1+ _-_ (7.23)

5.7.3.1.2. Deflection of a Loose Diaphragm Due to a Concentrated Force

The displacement d of a diaphragm due to the weight of a steel ball is shown

in the previous figure on the left. For the sake of simplicity, the ball weight is

assumed to act as a point force rather than a distributed force. The diaphragm

diameter can be approximated by:

21 = 2 v/R 2 + d 2 (7.24)

Therefore, if R and d are measured, and 21 is known, we can solve for

using Equation 7.23. In the range of displacement measured (50/1000-inch to

200/1000-inch), _ is only between 13% and 13.5°_ smaller than d.
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5.7.3.1.3. Maximum Sound Pressure Level Through a Loose Diaphragm

Using the adiabatic gas law, the perfect gas law, and the definition of the

speed of sound, the acoustic pressure p can be related to a volume variation dV

as follows:

(7.25)

For an acoustically transparent diaphragm in an infinite tube and for a

diaphragm displacement that is small compared to the sound wavelength, the

acoustic pressure amplitude at the diaphragm Pd is equal to the acoustic pressure

amplitude of a plane wave pp at any point in the tube. Therefore, from

Equation 7.25 we get,

dVd= dVp (7.26)

where the volume variation dVd due to the diaphragm motion is obtained by

integrating Equation 7.22:

_R2_
dVa= _ (7.27)

and the volume variation dVp associated with a plane wave generating a

displacement of the air of amplitude y is given by:

dVp= .R'u (7.2S)

Thus the maximum diaphragm displacement _ can be related to the

maximum air displacement amplitude y due to a plane wave at any point in

the tube by:
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(7.29)

For a sinusoidal plane traveling wave, the maximum acoustic pressure

amplitude through the diaphragm Pmax is easily calculated by integrating

Equation 7.29 with respect to time to get the acoustic velocity, and relating

it to the acoustic pressure using the momentum equation (see Equations 3.3

and 4.19):

pock( (7.30)
Pm_x =

The following table liststhe diaphragm displacement d measured using the

steelballfor various degrees of tightness,and the corresponding displacement (

for the same diaphragm due to an acoustic pressure load (solutionof the coupled

Equations 7.23 and 7.24). Also shown are the corresponding maximum sound

pressure levelsat two frequencies (Equation 7.30) before stretching occurs.

d _ SPL Max

(inches × 1000) (inches x 1000) (dB)

200 Hz

50 43 143

90 78 148

100 87 149

150 130 153

200 174 155

1000 Hz

157

162

163

167

169
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5.7.3.2. Non-Stretchable Loose Diaphragm Having Non-Zero Mass and

Non-Zero Stiffness

The more realistic case of a non-stretchable loose diaphragm having non-zero

mass, non-zero stiffness, and non-zero damping illustrates the way a diaphragm

acts as a partition and how to minimize its effect on the sound field. The

diaphragm studied here is assumed to be non-flexible. In other words, the motion

of every point of the diaphragm is the same. This assumption is a poor one, for in

reality, the diaphragm motion varies along its cross section and the restoring force

on the diaphragm is due mainly to its bending stiffness. However, the partition

model helps draw some basic conclusions about sound transmission through a

PCCE diaphragm, which can then be used as a set of guidelinesfor basic designs.

5.7.3.2.1. Acoustic Impedance Equations

The figure below is a schematic of a diaphragm in a tube having a termination

impedance Zz at x -- L. The diaphragm is assumed to have a mass, a stiffness,

and a damping coefficient per unit area of m, s, and r, respectively.

-g

Z(x=L)

r_Pi +
÷

_ Pr
S

÷X
x=O x=L
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Assuming that all points on the diaphragm are in phase and moving with the

same amplitude (i.e., the diaphragm is regarded as a rigid partition), the total

acoustic pressure and velocity on both sides of the diaphragm are given by:

p+(_,t): p__s(_,-k_)+p__i(_+k_ (7.31)

_+(_,t)= _ eJ(_-_)- _ ei(_+_) (7.32)
poe poe

where the acoustic velocities are readily obtained from the momentum equation.

The boundary conditions on the velocity are:

v+(:_= o,t) = I_,le;_' ; v+(x = L,t) = p+(x = L,t) (7.33)
z,s

where Ivl is the velocity amplitude of the diaphragm and Zt is the acoustic

impedance of the tube termination.

Solving for the acoustic pressure after the diaphragm we get:

p+(x,t) =
1 - e-y2kL (Zt - poe�S)

(z_ + poe/ s)

The acoustic pressure before the diaphragm is given by:

p-(x,t) - (2 p_-cos (kx) - Poelvleyk=)ey_=

(7.34)

(7.33)

The first term on the right-hand side represents the "blocked pressure", which

is the pressure that would exist if the diaphragm were fixed. The second term on

the right-hand side represents the contribution to the pressure field due to the

diaphragm motion.
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The equation of motion for the diaphragm can be written as:

8 *'1J°I :0..)
Using Equations 7.34, 7.35, and 7.36, the incident acoustic pressure amplitude

is given by:

po. I + (po./S)+ j zz tan(kL)J + _ +" (7.37)

The acoustic impedance at the diaphragm on the source side is obtained from

Equations 4.4, 7.35, and 7.37:

z(, = o- t) - 2p_-
' sl_l

-- poc
S

poc

S

Zl -F j (poclS) tan (kL)

(poclS) + j z_ tan (kL)
[d(<<,..,-,/_) + ,t

+
S

= z: + zm (7.38)

Z= is the acoustic impedance of a tube having a termination impedance Zi

(see Equation 6.5), and Zm is the mechanical impedance of the diaphragm.

5.7.3.2.2. Effect of Diaphragm Properties on the Sound Field as a

Function of Frequency

Inspecting Equation 7.38 helps us understand how the diaphragm affects the

sound field inside the tube. It is clear that in order to minimize its impact on

the sound field, the total impedance Z of the system must be dominated by the

acoustic impedance Za (Za >> Zm ), which can be insured by a proper design

and placement of the diaphragm.
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Next we can look at the frequency response of Zm, by first taking the simple

case of a plane wave traveling in an infinitely long or an anechoically terminated

tube. The total acoustic impedance at the diaphragm is given by:

z(x = 0-,t) - + + (7.39)

At very low frequencies (w << wr, where Wr = _f_) the total impedance Z

is controlled by the diaphragm stiffness, while at high frequencies (w >> wr), the

diaphragm mass is dominant. In either case, the diaphragm greatly affects the

sound field, limiting the amount of acoustic energy that can pass through it. At

a frequency car, the diaphragm is at resonance and its effect on the sound field

is minimal (Zm is at the minimum). In other words, the diaphragm acts as a

band-pass filter.

For a small damping compared to the acoustic impedance (r _ poe),

the diaphragm is essentially acoustically transparent until it bottoms-out (see

Section 5.7.3.1.3). For a light-weight, low-stiffness diaphragm, the stiffness and

inertia only become dominant at very low and very high frequencies, respectively,

well outside the operating frequency range of the system.

As mentioned above, proper design and placement of the diaphragm can

minimize its effect on the sound field.

For instance, in the case of a closed tube, the system impedance becomes:

poe 1 r. / s \ 1

For a diaphragm placed at a distance L from the closed end such that

A

L = n _, the acoustic impedance Za goes to infinity and the diaphragm effect is

negligible whatever its impedance is. In other words, placing the diaphragm at
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a velocity node (i.e., zero acoustic velocity) minimizes its effect. Another reason

for placing the diaphragm at a velocity node is that it will not move and therefore

will not bottom-out, thus allowing the use of a tight diaphragm.

Similarly, for an open-ended tube, the diaphragm should be placed at a

A

distance L from the end such that L = (2n + 1) _.

5.7.3.2.3. Generalization to Any Diaphragm

The results from the previous section can be generalized and used for any

tube and diaphragm arrangement by replacing Za and Zm in Equation 7.38.

This generalization is most useful in presenting some design guidelines on how to

minimize the effect of "real-life" diaphragms on the sound field in PCCE tubes.

The silvered Mylar diaphragms used have physical characteristics which differ

from the "rigid partition" assumption of the preceding section. These differences,

as well as their effect on the previous results, are listed below:

• The amplitude of the diaphragm motion is not constant over the whole

diaphragm area. However, this has no effect on the equations in Sec-

tion 5.7.3.2.1 since the acoustic velocity iv I is equal to the diaphragm velocity

averaged over the whole diaphragm area.

• The mass per unit area m of the diaphragm is about 0.0178 kg/m 2.

Neglecting stiffness and damping, and using the previous filter analogy, the

diaphragm can be looked at as a low-pass filter. The 3-dB point occurs

wm. poc which corresponds to a frequency
when Zm=y is equal to Za='-_-,

of 3710 Hz. Therefore, at the low frequencies of interest in this study

(,'_ 200 Hz), the transmission loss due to the diaphragm inertia is negligible

(-0.005 dB at 200 Hz).
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• The stiffness term is a complex function of the bending stiffness and the

Young's modulus of the diaphragm material. Due to diaphragm construction

and mounting, this term is most probably highly non-linear and varies widely

from one diaphragm to another. No simple theoretical estimate can be found

for the stiffness term and experiments should be carried out to determine

its magnitude versus degree of tightness and displacement. However, the

basic conclusion from the previous section is still valid: the diaphragm is

stiffness-controlled at low frequencies (stiffness acts as a high-pass filter).

The frequency range of the stiffness-controlled region should be determined

experimentally.

• The damping term is also different in the case of a PCCE diaphragm.

However, it is probably negligible compared to the inertia and stiffness terms.

5.7.3.2.4. Conclusions

The inertia of diaphragms used in PCCE tubes acts as a low-pass filter. For

Mylar, the 3-dB point of the filter is equal to 3710 Hz. Thus inertia is only

important for high-frequency mixing using quadrature speakers.

The stiffness of diaphragms acts as a high-pass filter and might have an effect

on the sound transmission at low frequencies depending on its magnitude. The

easier the diaphragm can "flap" back and forth, the less it will affect the sound

field.

Finally, when diaphragms are in a standing wave field, their effect can be

minimized by mounting them where the acoustic impedance is at a maximum

(i.e., where the acoustic velocity is at a minimum). In the case of a closed tube at

very low frequencies, this might not be possible, and the diaphragms should be

placed as close as possible to the tube terminations, where the acoustic velocity
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is very small. In any case, mounting diaphragms at velocity antinodes should be

avoided at all costs, because the diaphragms' contribution to the total impedance

is then maximized and they might stretch (bottom-out).

5.8. Two-Speaker Configuration

The two-speaker configuration has been used in PCCE tubes as a means

to better control the mixing process. The use of two low frequency opposite

loudspeakers allows better control of the standing wave pattern inside the

combustor tube, and therefore of the mixing process. The next two sections

review the two most common two-speaker configurations.

5.8.1. Non-Reflecting Two-Speaker Configuration

The non-reflecting two-speaker configuration is the simplest one. Although

it is unachievable with the present design of PCCE tubes due to the low acoustic

attenuation, it represents an ideal situation which best explains the concept of

the two-speaker set up.

In this configuration, the two loudspeakers are facing each other and the

sound field on the loudspeakers' axis is assumed to be only a combination of

the two incident waves coming from each loudspeaker. In other words, no sound

from one loudspeaker is reflected by the other. This configuration is typical of a

large anechoic chamber, or of the case when the acoustic attenuation is so high

that reflected and incident waves do not interfere with each other, For instance,

such an acoustic system is a good model for the multi-speaker acoustic levitation

devices designed for use in a zero-gravity environment.
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A non-reflecting two-speaker configuration for acoustic mixing is shown in

the figure below.

The two loudspeakers are mounted facing each other in an anechoic chamber.

Most of the sound radiated by each loudspeaker is absorbed by the anechoic area

surrounding the opposite loudspeaker so that the interactions between incident

and reflected waves are negligible. However, this set up is bulky and the desired

standing wave and strongest mixing only occur on the loudspeakers' axis.

The boundary conditions on the diaphragm velocity for the left and the right

loudspeakers are as follows:

gjwt (8.1)

Thus, the acoustic velocity on the loudspeakers' axis is given by:

v(x,t) = vl(x) cos (-kx- _) eY_t + v2(x) cos (kx + ¢) e jwt (8.3)

The x dependence of the acoustic velocities vl(x) and v2(x) takes into

account the spreading of the acoustic beam radiated from the loudspeaker.
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For instance, vl(x} = vl where So is the area of the left loudspeaker

diaphragm and S(x) is the area of the beam cross-section from that loudspeaker

at x. The shape of the beam depends on the shape and size of the diaphragm

as well as the sound wavelength. For the sake of simplicity, we assume here that

the waves from each loudspeaker are planar and that v -- vl(x) -- v2(x). Using

Equation 3.2 for a traveling plane wave, the acoustic pressure amplitude on the

loudspeakers' axis can be written as:

p(x,t)

amplitude

(8.4)

is characteristic of a standing wave pattern having a normalized

cos(kx+_). For a zero phase shift betweenloudspeakers (¢ =

0 degrees), the sound amplitude is maximum at the center (x - 0}. For a

180 degrees phase shift between loudspeakers (¢ = 180 degrees}, the sound

amplitude is zero at the center. Thus the standing wave pattern and the position

of the mixing cells can be shifted by changing ¢.

It is possible to move the nodes of the standing wave continuously and thus

also move the mixing cells by continuously changing the phase shift between each

source. This is best achieved by using slightly different excitation frequencies for

each loudspeaker. Rewriting the boundary conditions on the diaphragm velocity

of the left and right loudspeakers as follows:

we get the acoustic pressure:

(8.5)

_'_t (8.S)
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[ ( +7/p(z,t)=2pocvcos kz + _ + Aco t+

w1 -{- co2 w1 -- w2
where co = and _co - . _co controls the speed of the motion

2 2

of the mixing cells.

5.8.2. Reflecting Two-Speaker Configuration

The reflecting two-speaker configuration shown in the figure below is a good

approximation of the two-speaker set up tested in the 2-inch diameter PCCE

xf-L/2 x=O x

tube.

P
xfL/2

In this configuration, sound waves are reflected by the diaphragms from

each loudspeaker, imposing two non-zero boundary conditions on the acoustic

velocity in the tube. It is assumed that the operation of each loudspeaker is

unaffected by the sound field inside the tube. In other words, the combined

mechanical-electrical impedance of the loudspeakers is much higher than the

acoustic impedance of the tube. This assumption is usually valid for most

loudspeakers except around the tube resonance frequency.
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5.8.2.1. General Relationships

Solving for the acoustic pressure using the boundary conditions given by

Equations 8.1 and 8.2, we get:

= poc [-sin(_)(VlCOS[k(x-L/2)]+v2cos[k(x+L/2)])p(z, t) sin (kL)

+jcos(_)(-vl cos[k(x-L/2)]+v_cos[k(x+L/2)])] (8.8)

or, if p(x,t) -- ]3cJ_ :

3 -

poc
[(,_cos[k_- L/2)])2+ (,2 cos[_(_+ L/2)]) 2

[sin (kL)[

--21)1_ 2 COS[k (_- L/2)] cos[k (x + L/2)] cos (¢)11/2 (8.9)

and

(_) (vlcos[k(x- L/2)] + v2cos[k(x + L/2)])tan-I (ta) = tan _cos[k(x-L/2)]-v_cc_[k(x+L/2)]

Equation 8.9 characterizes a standing wave of period -.
2

5.8.2.2. Moving the Standing Wave Pattern

(8.10)

The expression for the magnitude of the pressure amplitude ]3 is much more

complex than in the case of two non-reflecting loudspeakers, and the control

of the standing wave pattern in the tube is not as straightforward. The two

parameters that can be used to move the standing wave around are the relative

phase ¢ and the relative amplitude v.1.1 between loudspeakers.
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5.8.2.2.1. Changing the Relative Phase between Loudspeakers

The effectof changing the relativephase between loudspeakers is given by

looking at the rate of variationof _ with ¢ while holding the other parameters

constant. From inspection of Equation 8.9,the resultisobvious and given by:

[ 0/_2] = Constant x sin(C) (8.11)

a¢ j

Therefore, the minimums and maximums in the standing wave pattern occur

for ¢ = nrr and are independent of frequency (or wavenumber). In other words,

as opposed to the previous case, the standing wave pattern cannot be moved on

the loudspeakers' axis by changing the relative phase alone. This is illustrated in

the next figure showing the normalized magnitude of the acoustic pressure in the

tube for several relative phase angles between loudspeakers. The loudspeakers'

amplitudes are kept constant and equal (Vl = v2 = 1 ), and the frequency is such

A which is halfway between the resonance frequencies for ¢ = 0
that L=1.5_,

and for ¢ = 7r (see Section 5.8.2.3).
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For ¢ = 0, the acoustic pressure magnitude /3 is zero at the center of the

tube due to the symmetrical motion of the loudspeaker diaphragms. At very

low frequencies, the air moves back and forth in the tube in an incompressible

fashion (j3 is very small). For ¢ = 2' /3 is constant through the pipe and

no standing waves are present (this is only true when vl -- v2). For ¢ = _,

j3 is maximum at the center of the tube due to the opposite motion of the

loudspeakers' diaphragms.

The variation of the pressure magnitude/3 as a function of the relative phase

angle ¢ in the middle of the tube is displayed in the next picture.

• 2
a_
:3 l.e
¢)

O
L_ 1.4

•ID 1.2
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0._
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0
'7 0.4

0.2

0
0 _/2 ' ° ' _/2 '

RelaUve Phase Angle

In effect, changing the relative phase between loudspeakers changes the

direction of rotation of the streaming vortices.

5.8.2.2.2. Changing the Loudspeakers' Amplitudes

The effect of changing the amplitudes of the loudspeakers while holding the

other parameters constant is given by:
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=con,,an,'x
¢

-I

cos [k(x - L/2)]- cos [k(x + L/2)] cos ¢/

(8.12)

The minimum of the pressure magnitude B occurs for:

vl 1 - tan (kx) tan (kL/2)
-- = cos¢ (8.13)
v2 1 + tan (kx) tan (kL/2)

or

(_?_) [_--Vl/(V2COS¢)] (8.14)tan (kx) = cot + v,/(v2 cos¢)

This equation can be satisfied for any value of x by a proper combination of

the loudspeakers' relative phase angle and amplitudes.

The figure below shows the solution of Equation 8.13 as a function of x for

A

a relative phase angle ¢ = 0, and a frequency such that L - 2.15 2" For each

x, the relative amplitude v___[1is obtained from Equation 8.13. Next, vl and v2
732

are normalized so that the pressure magnitude _ in the tube at a node is equal

to pc.
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The next figure shows the magnitude of the acoustic pressure in the

PCCE tube obtained using Equation 8.9, and for a pressure minimum at

3
Xo -- ---L. From the previous figure, the normalized diaphragm velocity of

10

the two loudspeakers required for a pressure minimum at x0 are: Ul -- 0.637

and v2 = 0.218.
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5.8.2.3. Resonances

0.$

Resonance occurs in the tube when the pressure magnitude fl (Equation 8.9)

goes to infinity. The resonance frequencies depend on the relative phase angle

and amplitude between loudspeakers.

5.8.2.3.1. ¢ = 0 and v = vl = v2

The pressure magnitude /_ simplifies to:

/_ = _pOC
sin(

cos (kL/2)
(8.15)
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Therefore, in this case, resonance occurs when the length of the pipe is equal

to an odd number of half-wavelengths:

(8.16)
L=(2n÷ 1) 5

or

c

A(n) -- (2n + 1) 2L (8.17)

The frequency interval between resonances is twice the frequency intcrva]

obtained in the case of one loudspeaker in a closed or open-ended tube (see

Equations 4.6 and 5.5).

5.8.2.3.2. ¢ = lr and v = vl = v2

The pressure magnitude _ reduces to:

fl = vpoc sin (kL/2) (8.18)

Resonances occur when the length of the pipe is equal to an integer number

of wavelengths:

L=n: (8.19)

or

The resonance frequencies when ¢ = _r

frequencies when ¢ = 0.

(8.20)

correspond to the antiresonance
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5.8.2.3.3. ¢ _ 0 andvl # v2

In this more general case, resonances occur when the denominator in

Equation 8.9 is equal to zero, i.e., when the length of the pipe is equal to an

integer number of half-wavelengths:

A

L=. 5

or

c

f,(.) = n 2-£ (8.22)

The frequency interval between resonances is the same as the frequency

interval obtained in the case of one loudspeaker in a closed or open-ended tube.

5.8.2.4. Conclusions

Again, as mentioned in the introduction, this analysis assumes that each

loudspeaker diaphragm has the same area as the tube cross section and that

the diaphragms' motions are unaffected by the acoustic field in the tube. This

represents ideal velocity sources such as two rigid pistons in a tube, as in the

figure below.

V V
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Here the motion of the pistons is unaffected by the fluid motion inside the

tube. At resonance, the acoustic impedance of the fluid at the face of each piston

is very large and the pistons require more energy to keep the faces moving at a

constant velocity. This can be illustrated by replacing the air inside the tube by a

medium having a higher acoustic impedance in order to simulate resonance. For

instance, if the air in the tube were replaced with water, which has a characteristic

impedance 3566 times the characteristic impedance of air, it is obvious that the

pistons would require an increase in power in order for the faces to maintain the

same velocity as they would if the working fluid were air. Moreover, the stresses

in the pistons' faces will be very high due to the high pressure in the fluid.

Loudspeakers used in PCCE experiments have a finite impedance and do not

act as rigid pistons at resonance. However, the analysis above should be accurate

for frequencies slightly away from the system resonance frequency. Around

the resonance frequency, a more accurate model can be obtained by replacing

the constant velocity boundary condition at the loudspeakers' diaphragms by

a complex impedance boundary condition. This complex impedance can be

measured or calculated using loudspeaker modeling techniques.
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6. Axial Resonances for PCCE Combustors

Due to the rigid terminations of the PCCE tube, axial resonances are present

which affect the mixing process. These resonances occur whether plane waves

or higher-order modes are excited. In this section, the frequencies for which

resonances occur are calculated in the case of plane waves and higher-order

modes. It is shown that the axial resonance frequencies are very close to each

other just above the cut-off frequency of the first spinning mode.

6.1. Axial Resonances for Plane Waves

Below the cut-off frequency of the first higher-order mode, only plane waves

propagate in the tube. Resonances occur when the pipe length L is an integer

multiple n of half the sound wavelength _, i.e.,

L=n_ (1)

or

nc

fr(.) = (2)

where f,.(n) is the n th resonance frequency and c is the speed of sound. The

resonance frequencies are separated by:

C

AfrCn) = fr(n + 1)- fr(n) -- 2L

For a 33.5-inch long tube, Aft(n) = 200 Hz (c = 340m/s).

(3)
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6.2. Axial Resonances for the First Spinning Mode

Axial resonances also occur in the tube when higher-order modes are excited.

However, these resonances do not occur at regular frequency intervals (as in the

plane wave) due to the constant variation of the axial wave number kz.

When a higher-order mode is excited, the axial wave number is given by:

k. = v/k2- (4)

where k is the wave number and kr is the radial wave number. In a tube, kr

is such that:

k,.R : _mn (5)

where R is the PCCE tube radius (R = 2.5 cm), and "Tma is the root of the

derivative of the Bessel function. In the case of the PCCE tube, only the first

spinning mode (mode 1,0) is excited. For this mode, "710 = 1.84. Therefore,

1.84

kr = -_- (6)

Thus,

kz _--" --

= _/3.415 × 10 -4 f2 - 5248 (7)
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The following figure displays k and kz for the first spinning mode of the

PCCE combustor, illustrating the nonlinear variation of kz with frequency.
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The cut-off frequency of the first mode occurs for kz = O, or

5248fc = 3.415 x 10 -4

= 3920 Hz (8)

As the frequency increases above fc, the axial wavenumber increases

nonlinearly from 0 when f = fc, to k when f --* co.

The resonance condition is the same as in the plane wave case: resonance

occurs when the pipe length L is an integer multiple n of half the sound axial

wavelength ,_=, i.e.,
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_Z

L=n-- (9)
2

replacing the axial wavelength _z by the axial wavenumber kz, we get:

k. = T (10)

Thus using Equation 7, axial resonances occur when:

or

T = _{_) (11)

c I(7)2 (1-_4) 2A{_}= _ +

= 54.11 _/13.63 n 2 + 5248 (12)

The following table lists the resonance frequencies f,,(n), the frequency

interval between each resonance Af,(n), the axial wavelength Az, and the

wavelength )_ as a function of n

t
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Hz Hz inches inches

1 3925 15 67.00 3.41
2 3940 25 33.50 3.40
3 3965 36 22.33 3.38
4 4001 44 16.75 3.35
5 4045 13.40 3.31

10 4400 94 6.70 3.04
11 4494 6.09 2.98
20 5597 144 3.35 2.39
21 5741 3.19 2.33
50 10730 186 1.34 1.25
51 10916 187 1.31 1.23
52 11103 1.29 1.21

As the frequencyincreases,the frequencyinterval Aft(n) betweenresonance

frequencies increases up to the plane wave value 200 Hz. At frequencies just above

the cut-off frequency of the first spinning mode, the frequency interval between

resonances is very small.

A quick experimental check was carried out by measuring the frequency

response of the PCCE combustor.

The sound pressure level in the PCCE combustor was measured with two

microphones mounted flush with the combustor wall. A radial microphone probe

was used to identify the modal characteristics of the sound field inside the tube,

and an axial microphone probe was used to check the axial homogeneity of the

sound field. The frequency response of the combustor was checked by sweeping

the frequency from 3500 Hz to 4100 Hz and recording the output signals from

the wall-mounted microphones. The sound pressure levels at the microphones

are fairly low below the cut-off frequency of the first spinning mode (plane waves
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only) except when axial resonances are excited (every 200 Hz). Above the cut-

off frequency of the first spinning mode, the sound pressure levels are much

higher (10 dB to 15 dB higher) due to the nonuniform pressure distribution

in the tube cross-section. Several peaks in the frequency response appear at

small frequency intervals and right after the cut-off frequency, corresponding to

the axial resonance frequencies obtained with Equation 12, thus confirming the

theoretical results.
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7. Conclusions and Recommendations

1. Combined operation of axial and quadrature speakers promises greatly

enhanced mixing compared to mixing by either mode alone. This prediction

is confirmed both experimentally and theoretically. A program of drop tower

tests is certainly justified.

2. Complete mixing in a sphere by steady streaming does not seem to be possible

except under extremely carefully controlled conditions. Satisfactory mixing

in a hemisphere is certainly possible. If mixing in the entire sphere is required,

it is recommended that the speaker be operated in transient bursts. Of

course, this mixing procedure can only be effective in micro-gravity.

3. Purely radial modes produce no secondary motion. Operation of the speakers

at the corresponding frequencies will be completely ineffective.

4. The following topics are suggested for possible further study. They are listed

in order of presumed complexity.

a. Solve the boundary value problem of a sphere driven by two arbitrarily

spaced and phased speakers. This would lead to an identification of the

nodal plane for spinning modes in a sphere.

b. Compute streaming, incorporating the small viscous corrections to the

compressibility and frequencies. This will make possible an exact

satisfaction of the no-slip boundary conditions.

c. Investigate more carefully the possibility of radial nodes in the cylinder

and sphere secondary flows. Could vorticity be generated internally by

shearing motions in the first order acoustic fields?

d. Study the interaction of first order axial and spinning modes.
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e. Investigate the effects of radiation pressure much more thoroughly. What

are the effects of multiple scattering on radiation pressure in a dense

particle field? What is the nature of the motion of particles through the

fluid due to radiation pressure? Is mixing influenced by particle density?

This last question may be quite important.
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